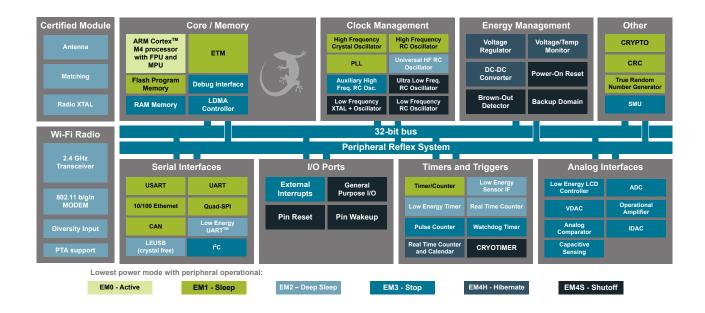


WGM160P Wi-Fi® Module Data Sheet

The WGM160P is an ultra low power standalone Wi-Fi® module targeted for applications requiring superior RF performance in noisy environments, low power consumption, high security, integrated customer applications and fast time to market.


The WGM160P module integrates all of the necessary elements required for a cloud connected IoT Wi-Fi application, including 802.11b/g/n radio, integrated chip antenna, certifications, microcontroller, Wi-Fi and IP stacks, HTTP server, and multiple protocols, such as TCP and UDP. Co-existence with external 2.4GHz transceivers is supported.

WGM160P can be configured to concurrently act as a Wi-Fi client and a Wi-Fi access point, which is ideal for user friendly device provisioning. WGM160P can natively host C-applications, removing the need for an external host controller. Alternatively, the Wi-Fi Module can run in Network Co-Processor (NCP) mode, leaving the complexity of TCP/IP networking to the module so that the customer's own host controller can be fully dedicated to processing the customer application tasks. The WGM160P module has highly flexible host and peripheral hardware interfaces for wide application use.

This module also supports Gecko OS, a comprehensive software suite designed to simplify your Wi-Fi, application, device management and cloud connectivity development process.

KEY POINTS

- Available with integrated chip antenna or an RF pin
- Antenna diversity supported via secondary RF pin
- IEEE 802.11 b/g/n compliant
- TX power: +16 dBm
- RX sensitivity: -95.5 dBm
- CPU core: 32-bit ARM® Cortex-M4
- · Flash memory: 2 MB
- RAM: 512 kB
- · Concurrent mode: Wi-Fi AP and STA
- · Ultra low power consumption
- · Modular certification
 - · CE, UKCA, FCC, ISED
 - · MIC, KC
- · End-to-end security
- Built-in 10/100 Ethernet Support
- Gecko OS support
- Size: 23.8 mm x 14.2 mm x 2.3 mm

1. Key Features

The key features of the WGM160P module are listed below.

Radio Features

- · Built-in Antenna (optional)
- TX Power: +16 dBm
- RX Sensitivity: -95.5 dBm
- · Superior blocking performance

Wi-Fi Features

- 802.11: b/g/n
- · Bit rate: up to 72.2 Mbps
- 802.11 Security: WPA2/WPA Personal
- · STA (Station Mode)
- · SoftAP (Soft Access Point Mode)

Electrical Characteristics

• Supply voltage: 3.0V to 3.6V

Environmental Specifications

• Temperature range: -40°C to +85°C

Modular Certification

- · CE and UKCA EU and UK
- FCC USA
- · ISED Canada
- · MIC Japan
- · KC South Korea
- · RoHS/REACH compliant

Dimensions

• L x W x H: 23.8 mm x 14.2 mm x 2.3 mm

MCU Features

- ARM® Cortex-M4, 72MHz
- 512 kB RAM
- · 2 MB Flash

Hardware Interfaces

- · Host interface: UART/SPI/USB
- · Peripheral interfaces
 - 2 x USART (UART/SPI/I2S)
 - · QSPI with Execute In Place (XIP) support
 - SD Card support (SPI)
 - · Capacitive Touch Sensing in all GPIOs
 - LESENSE
 - 10/100 Ethernet MAC with RMII interface
 - USB device (2.0 Full speed)
 - I²C peripheral interfaces
 - CAN
- Up to 31 x GPIO with interrupts
- 2 x 12-bit ADC
- 2 x 12-bit DAC
- · Rich selection of timers, inc. Real-time counters
- · Co-existence interface (PTA: 2, 3, 4 wire)

2. Ordering Information

Table 2.1. Ordering Information

Part Number	Protocol	Max TX Power	Flash/Ram (kB)	LF XTAL	Antenna	GPIO	Carrier
WGM160PX22KGA3	Wi-Fi (802.11 b/g/n)	16 dBm	2048 / 512	Included	Built-in	Up to 31	Cut Tape
WGM160PX22KGA3R	Wi-Fi (802.11 b/g/n)	16 dBm	2048 / 512	Included	Built-in	Up to 31	Reel
WGM160P022KGA3	Wi-Fi (802.11 b/g/n)	16 dBm	2048 / 512	None	Built-in	Up to 31	Cut Tape
WGM160P022KGA3R	Wi-Fi (802.11 b/g/n)	16 dBm	2048 / 512	None	Built-in	Up to 31	Reel
WGM160PX22KGN3	Wi-Fi (802.11 b/g/n)	16 dBm	2048 / 512	Included	External (RF Pin)	Up to 31	Cut Tape
WGM160PX22KGN3R	Wi-Fi (802.11 b/g/n)	16 dBm	2048 / 512	Included	External (RF Pin)	Up to 31	Reel
WGM160P022KGN3	Wi-Fi (802.11 b/g/n)	16 dBm	2048 / 512	None	External (RF Pin)	Up to 31	Cut Tape
WGM160P022KGN3R	Wi-Fi (802.11 b/g/n)	16 dBm	2048 / 512	None	External (RF Pin)	Up to 31	Reel

Note:

- 1. WGM160P modules come pre-programmed with the Gecko OS Kernel. Devices ship with the debug interface locked. Devices may be reprogrammed via serial or OTA DFU and preserve the device credentials. Unlocking the debug interface will result in loss of pre-programmed firmware, including Gecko OS Kernel and device credentials.
- 2. SLWSTK6121A Wireless Starter Kit and SLWRB4321A Radio Board are available to start developing with WGM160P Wi-Fi modules.
- 3. Devices listed may be referred to by the product family name (WGM160P), model name (WGM160P22A / WGM160P22N) or the full orderable part number throughout this document.

Table of Contents

1.	Key Features	. 2
2.	Ordering Information	. 3
3.	System Overview	. 6
	3.1 Introduction	. 6
	3.2 Wi-Fi Supported 2.4 GHz ISM Modulations, BW, and Channels	. 6
4.	Electrical Specifications	. 7
	4.1 Absolute Maximum Ratings	. 7
	4.2 Operating Conditions	. 8
	4.3 Power Consumption	. 8
	4.4 Digital I/O Specifications	. 9
	4.5 RF Transmitter General Characteristics	.10
	4.6 RF Receiver General Characteristics	.11
	4.7 Radiated Characteristics	.11
	4.8 Microcontroller Peripherals	.12
5.	Typical Applications and Connections	13
	5.1 RF Connections	.13
	5.1.1 Antenna Ports	
	5.1.2 Antenna Diversity	
	5.2 Multi-Protocol Coexistence	
	5.3 Example Schematic	
6.	Software	
	6.1 FMAC (Full MAC) Driver Architecture	
	6.2 Examples	
7.	Pin Descriptions	
	7.1 WGM160P Device Pinout	
	7.2 GPIO Functionality	
	7.3 Alternate Pin Functionality	.22
8.	Package Specifications	
	8.1 Package Outline	.32
	8.2 Recommended PCB Land Patterns	
	8.3 Package Marking	
9.	Soldering Recommendations	. 36
10	D. Tape and Reel Dimensions	37
11	l. Certifications	. 38

12	12. Revision History.															44
	11.7 KC - South Kor	ea														.43
	11.6 MIC - Japan .															.43
	11.5 Locating the Mo	odule Clos	e to F	Huma	an E	3ody	١.									.42
	11.4 ISED - Canada			-												.40
	11.3 FCC - USA			-												.39
	11.2 CE and UKCA	- EU and l	JK .													.38
	11.1 Qualified Exteri	nal Antenn	а Тур	oes												.38

3. System Overview

3.1 Introduction

The WGM160P module combines the WF200 Wi-Fi transceiver with an EFM32GG11 microcontroller to deliver a complete and certified standalone Wi-Fi solution, with the ability to run customer application on an Cortex M4 processor.

This device supports Gecko OS, a comprehensive software solution that simplifies the Wi-Fi, application and cloud connectivity development process to reduce time to market. For more details on the software platform, please consult our online documentation.

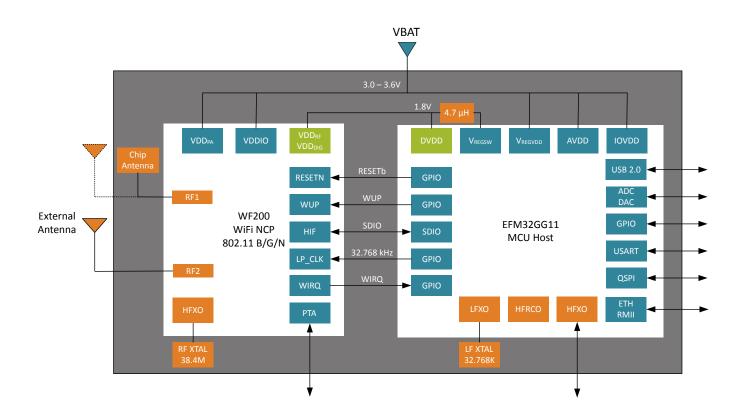


Figure 3.1. WGM160P Block Diagram

3.2 Wi-Fi Supported 2.4 GHz ISM Modulations, BW, and Channels

Table 3.1. Supported Wi-Fi Modulations, BW, and Channels

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Channel Center Frequency	CHAN	Subject to Regulatory Agency	2412	2437	2484 ¹	MHz
Channel Bandwidth	BW		_	20	_	MHz

Note:

1. Channel 14 only supports 1 and 2 Mbps modulations.

4. Electrical Specifications

All electrical parameters in all tables are specified under the following conditions, unless stated otherwise:

- Typical values are based on T_{AMB} = 25 °C; V_{VBAT} = 3.3V; Center Frequency = 2,437 MHz.
- Radio performance numbers are measured in conducted mode, based on Silicon Laboratories reference designs using output power-specific external RF impedance-matching networks for interfacing to a 50 Ω antenna port. Conducted RF measurements include additional output power reductions to guarantee WiFi and regulatory emissions compliance while connected to the specified antennas which have non-ideal impedance loading.

Refer to Section 4.2 Operating Conditions for more details about operational supply and temperature limits.

4.1 Absolute Maximum Ratings

Stresses above those listed below may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. For more information on the available quality and reliability data, see the Quality and Reliability Monitor Report at http://www.silabs.com/support/quality/pages/default.aspx.

Table 4.1. Absolute Maximum Ratings

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Storage temperature	T _{STG}		-40	_	105	°C
RF power level at RF1 and RF2 ports	P _{RFMAX}	Max power that can be applied to input of recommended matching network connected to RF1 and RF2 pins.	_	_	10	dBm
Maximum supply voltage to VBAT	VBAT _{MAX}		-0.3	_	3.6	V
DC voltage on I/O pins	VG _{MAX}	5 V tolerant GPIO (PF0, PF1, PF10, PF11) ^{1 2}	-0.3	_	Min of 5.25 and VBAT +2	V
		All other GPIO and PTA pins	-0.3	_	VBAT + 0.3	V
Current into any GPIO pin	IO _{MAX}		_	_	20	mA
Sum of current into all GPIO pins	IO _{ALL_MAX}		_	_	150	mA
Range of load impedance at RF1 and RF2 pins during TX	LOAD _{TX}		_	_	10:1	VSWR

Note:

- 1. When a GPIO is used for analog functions via the APORT, the maximum voltage is VBAT.
- 2. To operate above the VBAT supply rail, over-voltage tolerance must be enabled according to the GPIO_Px_OVTDIS register. Pins with over-voltage tolerance disabled have the same limits as all other GPIO (max = VBAT + 0.3 V).

4.2 Operating Conditions

Table 4.2. Recommended Operating Conditions

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Ambient operating temperature	T _A		-40	_	85	°C
Nominal supply voltage to VBAT ¹	V_{VBAT}		3.0	3.3	3.6	V

Note:

4.3 Power Consumption

All currents measured with VBAT = 3.3 V.

Table 4.3. Power Consumption

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Continuous TX current, 1 Mbps, max power setting	ITX _{MAX}		_	141.3	_	mA
Continuous TX current, MCS7, max power setting	ITX _{MAX_N}		_	131.4	_	mA
Continuous RX listen current	IRX _{MAX}		_	36.6	_	mA
Continuous RX receive current, 1 Mbps	IRX _{MAXR}		_	34.5	_	mA
Continuous RX receive current, MCS7	IRX _{MAXR_N}		_	38.5	_	mA
Average Current DTIM=1	I _{LP_DTIM1}	Connected as STATION. EFM32GG11 in EM2 mode. DC-DC in Low Noise mode CCM 3 MHz.	_	641	_	μА
Average Current DTIM=3	I _{LP_DTIM3}	Connected as STATION. EFM32GG11 in EM2 mode. DC-DC in Low Noise mode CCM 3 MHz.	_	270	_	μА
Average Current DTIM=10	I _{LP_DTIM10}	Connected as STATION. EFM32GG11 in EM2 mode. DC-DC in Low Noise mode CCM 3 MHz.	_	147	_	μА
Sleep current	I _{SLEEP}	EFM32GG11 in EM2 mode, DC-DC in Low-Noise mode CCM 3 MHz.	_	90	_	μΑ
Standby mode current	I _{STANDBY}	No memory retained. WF200 in Shutdown mode, EFM32GG11 in EM4 mode.	_	217	_	nA

^{1.} Operating outside of the recommended voltage supply range is not supported. The module may disable WiFi transmit functions when operating outside of this range in order to guarantee regulatory emissions compliance.

4.4 Digital I/O Specifications

Table 4.4. Digital I/O Specifications

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Voltage input high (relative to VBAT)	V _{IH}		70	_	_	%
Voltage input low (relative to VBAT)	V _{IL}		_	_	30	%
Logic low output voltage (rel-	V _{OL}	PTA Pins, Sinking 5 mA	_	_	25	%
ative to VBAT)		GPIO Pins, Sinking 20 mA, DRIV- ESTRENGTH = STRONG	_	_	25	%
Logic high output voltage	V _{OH}	PTA Pins, Sourcing 5 mA	75	_	_	%
(relative to VBAT)		GPIO Pins, Sourcing 20 mA, DRIVESTRENGTH = STRONG	75	_	_	%
Input leakage current	I _{Leak}	All I/O when GPIO voltage ≤ VBAT	_	1	_	nA
		5 V Tolerant I/O (PF0, PF1, PF10, PF11) when VBAT < GPIO voltage ≤ VBAT + 2 V	_	3.3	15	μА
Pullup resistance	R _{PU}		30	40	65	kΩ
Pulldown resistance	R _{PD}		30	40	65	kΩ
Output fall time from V _{OH} to V _{OL}	T _{OF}	50 pF load, DRIVESTRENGTH = STRONG, SLEWRATE = 0x6	_	1.8	_	ns
		50 pF load, DRIVESTRENGTH = WEAK, SLEWRATE = 0x6	_	4.5	_	ns
Output rise time from V_{OL} to V_{OH}	T _{OR}	50 pF load, DRIVESTRENGTH = STRONG, SLEWRATE = 0x6	_	2.2	_	ns
		50 pF load, DRIVESTRENGTH = WEAK, SLEWRATE = 0x6	_	7.4	_	ns
Required external series resistor on USB D+ and D-	R _{USB}		_	33 +/-10%	_	Ω

4.5 RF Transmitter General Characteristics

Unless otherwise indicated, typical conditions are: Operating Ambient Temp = 25 °C, VBAT = 3.3 V, center frequency = 2,437 MHz, and measured in 50 Ω test equipment attached at antenna port.

Measurements for this specification are made at the 50 Ω Antenna Port. See Section 5.1.1 Antenna Ports. Conducted RF measurements include additional output power reductions to guarantee WiFi and regulatory emissions compliance while connected to the specified antennas which have non-ideal impedance loading.

Table 4.5. RF Transmitter Characteristics

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Maximum RMS Output Pow-	POUT _{MAX_RMS_}	802.11b: 1 Mbps	_	16.1	_	dBm
er at Antenna (High Power PA) 1	HPPA	802.11b: 11 Mbps	_	15.1	_	dBm
		802.11g: 6 Mbps	_	14.7	_	dBm
		802.11g: 54 Mbps	_	9.1	_	dBm
		802.11n: MCS=0	_	14.4	_	dBm
		802.11n: MCS=7	_	5.8	_	dBm
Carrier frequency error	CARR _{FREQ_ER-}	Across temperature	-25	_	25	ppm
POUT variation over supply voltage range, relative to nominal 3.3 V	POUT _{VAR_V}	VBAT = 3.0-3.6 V	_	+0.3 / -1.1	_	dB
POUT variation over frequency range, relative to average ¹	POUT _{VAR_F}	CH1 to CH14	_	+/-0.15	_	dB
POUT variation over temperature range, relative to 25C	POUT _{VAR_T}	-40 to +85C	_	+0.1 / -1.2	_	dB

Note:

^{1.} Rated power levels may not apply to the edge channels, which may need additional backoff for FCC compliance.

4.6 RF Receiver General Characteristics

Unless otherwise indicated, typical conditions are: Operating Ambient Temp = 25 °C, VBAT = 3.3 V, center frequency = 2,437 MHz, and measured in 50 Ω test equipment attached at antenna port.

Measurements for this specification are made at the 50 Ω Antenna Port. See Section 5.1.1 Antenna Ports.

Table 4.6. RF Receiver Characteristics

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
RX Sensitivity for 8% FER	SENS _B	802.11b: 1 Mbps	_	-95.5	_	dBm
(1024 Octet) ¹		802.11b: 11 Mbps	_	-88.3	_	dBm
RX Sensitivity for 10% PER	SENS _G	802.11g: 6 Mbps	_	-89	_	dBm
(1024 Octet) ¹		802.11g: 54 Mbps	_	-75.2	_	dBm
RX Sensitivity for 10% PER	SENSEN	802.11n: MCS=0	_	-89.3	_	dBm
(4096 Octet) ¹		802.11n: MCS=7	_	-72.8	_	dBm
RX Max Strong Signal for	RX _{SAT_B}	802.11b: 1 Mbps	_	-4.0	_	dBm
8% FER (1024 Octet)		802.11b: 11 Mbps	_	-10.0	_	dBm
RX Max Strong Signal for	RX _{SAT_G}	802.11g: 6 Mbps	_	-9.0	_	dBm
10% PER (1024 Octet)		802.11g: 54 Mbps	_	-9.0	_	dBm
RX Max Strong Signal for	RX _{SAT_N}	802.11n: MCS=0	_	-9.0	_	dBm
10% PER (4096 Octet)		802.11n: MCS=7	_	-9.0	_	dBm
Sensitivity variation across frequency range, CH1 to CH14	SENS _{VAR_V}	802.11b 1 Mbps	_	+/-0.5	_	dB
Sensitivity variation over temperature range, -40 to 85C	SENS _{VAR_TEMP}	802.11b 1 Mbps	_	+/-1.3	_	dB
RX Channel power Indicator Step Size	RCPI _{STEP}	802.11b: 1 Mbps	_	0.5	_	dB
Note:		1	1	1	1	

Note:

4.7 Radiated Characteristics

Unless otherwise indicated, typical conditions are: Operating Ambient Temp = 25 °C, VBAT = 3.3 V, center frequency = 2437 MHz, using the integrated antenna, and measured with the ideal application board size for 2.4 GHz radiation.

Table 4.7. Radiated Characteristics

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Application board size, radiated edge "X" dimension ¹	PCB _{X_MM}		40	50	_	mm
Antenna Efficiency	ANT _{EFF}	Optimal application board design	_	-1.4	_	dB

Note:

1. Refer to "UG384: WGM160P Hardware Design Users Guide" for more PCB layout details.

^{1.} Measurement taken at U.FL connector. Includes 0.5 dB loss introduced by connnector.

4.8 Microcontroller Peripherals

WGM160P offers an extensive list of peripherals, some of which are listed below:

- 12-bit ADC
- 12-bit DAC
- GPIO
- USART (UART/SPI/I2S)
- · QSPI with Execute In Place (XIP) support
- · Capacitive Touch Sensing in all GPIOs
- LESENSE
- 10/100 Ethernet MAC with RMII interface (50 MHz external crystal required)
- USB device (2.0 Full speed)
- I²C peripheral interfaces
- CAN
- · Timers
- · LCD Driver

For more information on the pins these peripherals are availabile on, please consult: 7.2 GPIO Functionality and 7.3 Alternate Pin Functionality.

For details on the electrical performance of these peripherals, please consult the relevant portions of Section 4 in the EFM32GG11 Family Datasheet (See EFM32GG11B820F2048GM64).

5. Typical Applications and Connections

For more information, see UG384: WGM160P Hardware Design Users Guide.

5.1 RF Connections

5.1.1 Antenna Ports

The WGM160P offers two RF ports that support antenna diversity using an internal switch. In applications with only one antenna, the unused port should be terminated to ground with a 47-51 Ω resistor. Leaving the unused port floating or tying directly to ground will result in degraded performance. An external antenna connected to either RF port needs to be properly matched with at least -10dB return loss (VSWR < 2).

5.1.2 Antenna Diversity

In applications where multipath fading is a potential issue, such as indoors, a second antenna can be connected. A firmware feature can be enabled to automatically determine which of the two antennas gives a better signal, allowing significant improvement in link reliability.

5.2 Multi-Protocol Coexistence

Packet Transmit Arbitration (PTA) pins are provide to share antenna and optimize coexistence performance with other networks including other protocols. See Application Notes AN1128: Bluetooth Coexistence with Wi-Fi, AN1017: Zigbee and Thread Coexistence with Wi-Fi and AN1224 Wi-Fi Coexistence with other 2.4GHz Radio Protocols for more information.

5.3 Example Schematic

Note: RF1 pin connected internally to module antenna in WGM160PX22KGAx.

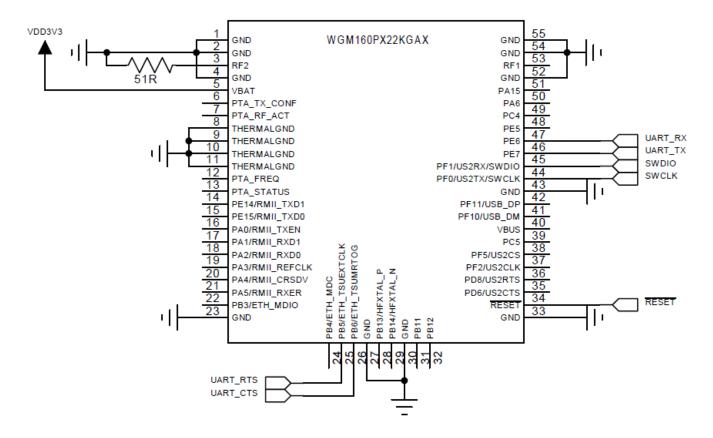


Figure 5.1. Example Schematic for NCP Application

6. Software

WGM160P software is based on the FMAC (Full MAC) driver. Architecture and examples are described below.

6.1 FMAC (Full MAC) Driver Architecture

Utilizing the Full MAC driver, both the lower MAC and upper MAC are running in WF200 of the WGM160P. The WF200 contains a WPA/WPA2 personal supplicant, allowing it to handle full MAC responsibilities without utilizing the host MCU. The host receives an IP packet and implements all stack layers necessary above it. The figure below shows the typical software architecture in Full MAC implementations.

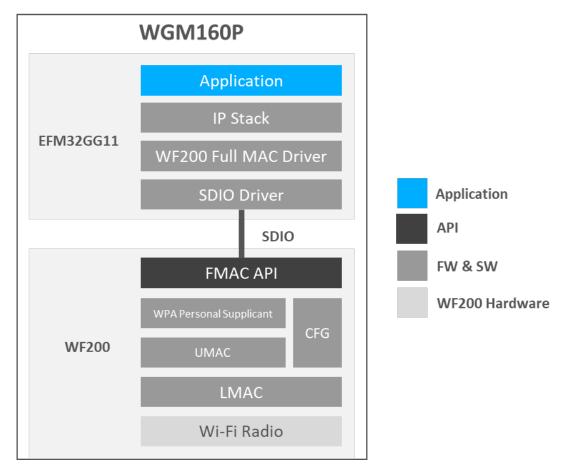


Figure 6.1. Full MAC Implementation

Note: The WPA supplicant on WF200 does not support WPA enterprise. If WPA-enterprise is required, then it should be implemented above the IP stack in the FFM32GG11 software.

6.2 Examples

Numerous software examples are available from Simplicity Studio or the GitHub repository. These examples utilize the MicriumOS Kernel, FreeRTOS or Bare Metal (no RTOS). Unless otherwise specified in the repository, all examples are considered to be EXPERIMENTAL QUALITY which implies that the code provided in the repos has not been formally tested and is provided as-is. They are not suitable for production environment.

For more information see the following:

- · https://docs.silabs.com/wifi/
- · https://github.com/SiliconLabs/wfx-fullMAC-tools

7. Pin Descriptions

7.1 WGM160P Device Pinout

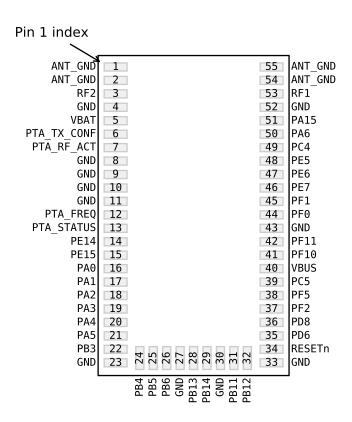


Figure 7.1. WGM160P Device Pinout

The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 7.2 GPIO Functionality or 7.3 Alternate Pin Functionality.

Table 7.1. WGM160P Device Pinout

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
ANT_GND	1 2 54 55	Antenna ground.	RF2	3	External antenna connection for diversity antenna. Terminate to ground with 47-51 Ohms if not connected to an antenna.

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
GND	4 8 9 10 11 23 27 30 33 43 52	Ground. Connect all ground pins to ground plane.	VBAT	5	Module power supply
PTA_TX_CO NF	6	PTA TX_CONF pin. These pins can be used to manage co-existence with another 2.4 GHz radio.	PTA_RF_AC T	7	PTA RF_ACT pin. These pins can be used to manage co-existence with another 2.4 GHz radio.
PTA_FREQ	12	PTA FREQ pin. These pins can be used to manage co-existence with another 2.4 GHz radio.	PTA_STA- TUS	13	PTA STATUS pin. These pins can be used to manage co-existence with another 2.4 GHz radio.
PE14	14	GPIO	PE15	15	GPIO
PA0	16	GPIO	PA1	17	GPIO
PA2	18	GPIO	PA3	19	GPIO
PA4	20	GPIO	PA5	21	GPIO
PB3	22	GPIO	PB4	24	GPIO
PB5	25	GPIO	PB6	26	GPIO
PB13	28	GPIO	PB14	29	GPIO
PB11	31	GPIO	PB12	32	GPIO
RESETn	34	Reset input, active low. This pin is internally pulled up to VBAT. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.	PD6	35	GPIO
PD8	36	GPIO	PF2	37	GPIO
PF5	38	GPIO	PC5	39	GPIO
VBUS	40	USB VBUS signal and auxiliary input to 5 V regulator. May be left disconnected if USB is unused.	PF10	41	GPIO (5V)
PF11	42	GPIO (5V)	PF0	44	GPIO (5V)
PF1	45	GPIO (5V)	PE7	46	GPIO
PE6	47	GPIO	PE5	48	GPIO
PC4	49	GPIO	PA6	50	GPIO
PA15	51	GPIO	RF1	53	External antenna connection on WGM160P22N. Not connected on WGM160P22A.

Note:

1. GPIO with 5V tolerance are indicated by (5V).

7.2 GPIO Functionality

A wide selection of alternate functionality is available for multiplexing to various pins. The following table shows the name of each GPIO pin, followed by the functionality available on that pin. Refer to 7.3 Alternate Pin Functionality for a list of GPIO locations available for each function.

Full peripheral features and flexibility are not supported with all software architectures. In particular, some restrictions apply when using Gecko OS. Refer to "UG384 WGM160P Hardware Design Users Guide" for more details.

Table 7.2. GPIO Functionality Table

GPIO Name	Pin Alternate Functionality / Description				
	Analog	Timers	Communication	Other	
			ETH_RMIITXEN		
	DUEDV	TIM0_CC0 #0	US1_RX #5	CMU_CLK2#0	
PA0	BUSBY	TIM0_CC1 #7	US3_TX #0	PRS_CH0 #0	
FAU	LCD_SEG13	TIM3_CC0 #4	QSPI0_CS0	PRS_CH3	
	LCD_SEG 13	PCNT0_S0IN #4	LEU0_RX #4	GPIO_EM4WU0	
			I2C0_SDA #0		
	BUSAY	TIM0_CC0 #7	ETH_RMIIRXD1		
PA1	BUSBX	TIM0_CC1 #0	US3_RX #0	CMU_CLK1 #0	
PAI	LCD_SEG14	TIM3_CC1 #4	QSPI0_CS1	PRS_CH1	
	LCD_SEG14	PCNT0_S1IN #4	I2C0_SCL #0		
	BUSBY		ETH_RMIIRXD0	CMU_CLK0 #0	
PA2	BUSAX LCD_SEG15	TIM0_CC2 #0	US1_RX #6	PRS_CH8	
		TIM3_CC2 #4	US3_CLK	ETM_TD0 #3	
			QSPI0_DQ0	ETW_TD0 #3	
				CMU_CLK2 #1	
	BUSAY		ETH_RMIIREFCLK	CMU_CLKI0 #1	
PA3	BUSBX	TIM0_CDTI0	US3_CS	CMU_CLK2 #4	
FAS	LCD_SEG16	TIM3_CC0 #5	U0_TX #2	LES_ALTEX2	
	LCD_SEG 10		QSPI0_DQ1	PRS_CH9	
				ETM_TD1	
	BUSBY		ETH_RMIICRSDV	LES_ALTEX3	
PA4	BUSAX	TIM0_CDTI1	US3_CTS #0	PRS_CH16 #0	
1 /\ 1	LCD_SEG17	TIM3_CC1 #5	U0_RX #2	ETM_TD2 #3	
	202_02011		QSPI0_DQ2	ETW_102 #3	
			ETH_RMIIRXER	LES_ALTEX4	
	BUSAY	TIM0_CDTI2 #0	US3_RTS	PRS_CH17 #0	
PA5	BUSBX	TIM3_CC2 #5	U0_CTS	ACMP1_O #7	
	LCD_SEG18	PCNT1_S0IN #0	QSPI0_DQ3	ETM_TD3 #3	
			LEU1_TX #1	E1W_1D3#3	

GPIO Name	Pin Alternate Functionality / Description					
	Analog	Timers	Communication	Other		
PA6	BUSBY BUSAX LCD_SEG19	TIM3_CC0 #6 WTIM0_CC0 #1 LETIM1_OUT1 #0 PCNT1_S1IN #0	ETH_MDC #3 U0_RTS #2 LEU1_RX #1	PRS_CH6 #0 ACMP0_O #4 ETM_TCLK GPIO_EM4WU1		
PA15	BUSAY BUSBX LCD_SEG12	TIM3_CC2 #0	ETH_MDIO #3 US2_CLK #3	PRS_CH15 #0		
PB3	BUSAY BUSBX LCD_SEG20 / LCD_COM4	TIM1_CC3 #2 WTIM0_CC0 #6 PCNT1_S0IN #1	ETH_MDIO #0 US2_TX #1 US3_TX #2 QSPI0_DQ4	PRS_CH19 #0 ACMP0_O #7		
PB4	BUSBY BUSAX LCD_SEG21 / LCD_COM5	WTIM0_CC1 #6 PCNT1_S1IN #1	ETH_MDC #0 US2_RX #1 QSPI0_DQ5 LEU1_TX #4	PRS_CH20		
PB5	BUSAY BUSBX LCD_SEG22 / LCD_COM6	WTIM0_CC2 #6 LETIM1_OUT0 PCNT0_S0IN #6	ETH_TSUEXTCLK US0_RTS #4 US2_CLK #1 QSPI0_DQ6 LEU1_RX #4	PRS_CH21 #0		
PB6	BUSBY BUSAX LCD_SEG23 / LCD_COM7	TIM0_CC0 #3 TIM2_CC0 #4 WTIM3_CC0 LETIM1_OUT1 #4 PCNT0_S1IN #6	ETH_TSUTMRTOG US0_CTS #4 US2_CS #1 QSPI0_DQ7	PRS_CH12#1		
PB11	BUSAY BUSBX VDAC0_OUT0 / OPA0_OUT IDAC0_OUT	TIM0_CDTI2 #4 TIM1_CC2 WTIM2_CC2 LETIM0_OUT0 #1 PCNT0_S1IN #7 PCNT1_S0IN #6	US0_CTS #5 US1_CLK #5 US2_CS #3 U1_CTS #2 I2C1_SDA #1	CMU_CLK1 #5 CMU_CLKI0 #7 PRS_CH21 #2 ACMP0_O #3 GPIO_EM4WU7		
PB12	BUSBY BUSAX VDAC0_OUT1 / OPA1_OUT	TIM1_CC3 #3 WTIM2_CC0 LETIM0_OUT1 #1 PCNT0_S0IN #7 PCNT1_S1IN #6	US2_CTS #1 U1_RTS #2 I2C1_SCL #1	PRS_CH16 #1		

GPIO Name		Pin Alternate Functionality / Description				
	Analog	Timers	Communication	Other		
	BUSAY	TIM6_CC0	US0_CLK #4	CM11 CL1XIO #3		
PB13	BUSBX	WTIM1_CC0 #0	US1_CTS	CMU_CLKI0 #3		
	HFXTAL_P	PCNT2_S0IN #2	LEU0_TX #1	PRS_CH7 #0		
	BUSBY	TIM6_CC1	US0_CS			
PB14	BUSAX	WTIM1_CC1	US1_RTS	PRS_CH6 #1		
	HFXTAL_N	PCNT2_S1IN #2	LEU0_RX #1			
PC4	BUSACMP0Y BUSACMP0X OPA0_P	TIM0_CC0 #5 TIM0_CDTI2 #3 TIM2_CC2 LETIM0_OUT0 #3 PCNT1_S0IN #3	US2_CLK #0 U0_TX #4 U1_CTS #4 I2C1_SDA #0	LES_CH4 PRS_CH18 GPIO_EM4WU6		
PC5	BUSACMP0Y BUSACMP0X OPA0_N	TIM0_CC1 #5 LETIM0_OUT1 #3 PCNT1_S1IN #3	US2_CS #0 U0_RX #4 U1_RTS #4 I2C1_SCL #0	LES_CH5 PRS_CH19 #2		
PD6	BUSADCOY BUSADCOX ADC0_EXTP VDAC0_EXT ADC1_EXTP OPA1_P	TIM1_CC0 #4 TIM6_CC2 WTIM0_CDTI2 WTIM1_CC0 #2 LETIM0_OUT0 #0 PCNT0_S0IN #3	US0_RTS #5 US1_RX #2 US2_CTS #5 US3_CTS #2 U0_RTS #5 I2C0_SDA #1	CMU_CLK2 #2 LES_ALTEX0 PRS_CH5 ACMP0_O #2 ETM_TD0 #0		
PD8	BU_VIN	WTIM1_CC2 #2	US2_RTS	CMU_CLK1 #1 PRS_CH12 #2 ACMP2_O		
PE5	BUSCY BUSDX LCD_COM1	TIM3_CC0 #3 TIM3_CC2 #2 TIM5_CC1 #0 TIM6_CDTI1 WTIM0_CC1 #0 WTIM1_CC2 #4	US0_CLK #1 US1_CLK #6 US3_CTS #1 U1_RTS #3 I2C0_SCL #7	PRS_CH17 #2		
PE6	BUSDY BUSCX LCD_COM2	TIM3_CC1 #3 TIM5_CC2 #0 TIM6_CDTI2 WTIM0_CC2 #0 WTIM1_CC3	US0_RX US3_TX #1	PRS_CH6 #2		

GPIO Name	Pin Alternate Functionality / Description					
	Analog	Timers	Communication	Other		
PE7	BUSCY BUSDX LCD_COM3	TIM3_CC2 #3 TIM5_CC0 WTIM1_CC0 #5	US0_TX US3_RX #1	PRS_CH7 #2		
PE14	BUSDY BUSCX LCD_SEG10	TIM2_CDTI1 TIM3_CC0#0	ETH_RMIITXD1 US0_CTS #0 QSPI0_SCLK LEU0_TX #2	PRS_CH13 ETM_TD2 #4		
PE15	BUSCY BUSDX LCD_SEG11	TIM2_CDTI2 TIM3_CC1 #0	ETH_RMIITXD0 US0_RTS #0 QSPI0_DQS LEU0_RX #2	PRS_CH14 ETM_TD3 #4		
PF0	BUSDY BUSCX	TIM0_CC0 #4 WTIM0_CC1 #4 LETIM0_OUT0 #2	US2_TX #5 CAN0_RX US1_CLK #2 LEU0_TX #3 I2C0_SDA #5	PRS_CH15#2 ACMP3_O DBG_SWCLKTCK BOOT_TX		
PF1	BUSCY BUSDX	TIM0_CC1 #4 WTIM0_CC2 #4 LETIM0_OUT1 #2	US2_RX #5	PRS_CH4 DBG_SWDIOTMS GPIO_EM4WU3 BOOT_RX		
PF2	BUSDY BUSCX LCD_SEG0	TIM0_CC2 #4 TIM1_CC0 #5 TIM2_CC0 #3	US2_CLK #5 CAN0_TX US1_TX U0_RX #5 LEU0_TX #4 I2C1_SCL #4	CMU_CLK0 #4 PRS_CH0 #3 ACMP1_O #0 DBG_TDO DBG_SWO GPIO_EM4WU4		
PF5	BUSCY BUSDX LCD_SEG3	TIM0_CDTI2 #2 TIM1_CC3 #6 TIM4_CC0	US2_CS #5 I2C2_SCL #0 USB_VBUSEN	PRS_CH2 DBG_TDI		
PF10	BUSDY	TIM5_CC1 #6 WTIM3_CC1 PCNT2_S0IN #3	U1_TX I2C2_SDA USB_DM			
PF11	BUSCY BUSDX	TIM5_CC2 #6 WTIM3_CC2 PCNT2_S1IN #3	U1_RX I2C2_SCL #2 USB_DP			

7.3 Alternate Pin Functionality

A wide selection of alternate functionality is available for multiplexing to various pins. The following table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings and the associated GPIO pin. Refer to 7.2 GPIO Functionality for a list of functions available on each GPIO pin.

Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0.

Table 7.3. Alternate Functionality Overview

Alternate	LOC	ATION	
Functionality	0 - 3	4 - 7	Description
101100	2: PD6	4: PA6	
ACMP0_O	3: PB11	7: PB3	Analog comparator ACMP0, digital output.
ACMP1_O	0: PF2	7: PA5	Analog comparator ACMP1, digital output.
ACMP2_O	0: PD8		Analog comparator ACMP2, digital output.
ACMP3_O	0: PF0		Analog comparator ACMP3, digital output.
ADC0_EXTP	0: PD6		Analog to digital converter ADC0 external reference input positive pin.
ADC1_EXTP	0: PD6		Analog to digital converter ADC1 external reference input positive pin.
BOOT_RX	0: PF1		Bootloader RX.
BOOT_TX	0: PF0		Bootloader TX.
BU_VIN	0: PD8		Battery input for Backup Power Domain.
CAN0_RX	1: PF0		CAN0 RX.
CAN0_TX	1: PF2		CAN0 TX.
CMU_CLK0	0: PA2	4: PF2	Clock Management Unit, clock output number 0.
CMU_CLK1	0: PA1	5: PB11	Clock Management Unit, clock output number 1.
CMO_CERT	1: PD8		Clock Management Offit, clock output number 1.
	0: PA0	4: PA3	
CMU_CLK2	1: PA3		Clock Management Unit, clock output number 2.
	2: PD6		
CMIL CLIVIO	1: PA3	7: PB11	Clark Management Unit, alogk input number 0
CMU_CLKI0	3: PB13		Clock Management Unit, clock input number 0.
DDC CWOLKTOK	0: PF0		Debug-interface Serial Wire clock input and JTAG Test Clock.
DBG_SWCLKTCK			Note that this function is enabled to the pin out of reset, and has a built-in pull down.
DDC SWDIOTMS	0: PF1		Debug-interface Serial Wire data input / output and JTAG Test Mode Select.
DBG_SWDIOTMS			Note that this function is enabled to the pin out of reset, and has a built-in pull up.
	0: PF2		Debug-interface Serial Wire viewer Output.
DBG_SWO			Note that this function is not enabled after reset, and must be enabled by software to be used.

Alternate	LOCA	ATION	
Functionality	0 - 3	4 - 7	Description
	0: PF5		Debug-interface JTAG Test Data In.
DBG_TDI			Note that this function becomes available after the first valid JTAG command is received, and has a built-in pull up when JTAG is active.
	0: PF2		Debug-interface JTAG Test Data Out.
DBG_TDO			Note that this function becomes available after the first valid JTAG command is received.
ETH MDC	0: PB4		Ethernet Management Data Cleek
ETH_MDC	3: PA6		Ethernet Management Data Clock.
ETU MDIO	0: PB3		Ethernet Management Data I/O
ETH_MDIO	3: PA15		Ethernet Management Data I/O.
ETH_RMIICRSDV	0: PA4		Ethernet RMII Carrier Sense / Data Valid.
ETH_RMIIREFCLK	0: PA3		Ethernet RMII Reference Clock.
ETH_RMIIRXD0	0: PA2		Ethernet RMII Receive Data Bit 0.
ETH_RMIIRXD1	0: PA1		Ethernet RMII Receive Data Bit 1.
ETH_RMIIRXER	0: PA5		Ethernet RMII Receive Error.
ETH_RMIITXD0	0: PE15		Ethernet RMII Transmit Data Bit 0.
ETH_RMIITXD1	0: PE14		Ethernet RMII Transmit Data Bit 1.
ETH_RMIITXEN	0: PA0		Ethernet RMII Transmit Enable.
ETH_TSUEXTCLK	0: PB5		Ethernet IEEE1588 External Reference Clock.
ETH_TSUTMR- TOG	0: PB6		Ethernet IEEE1588 Timer Toggle.
ETM_TCLK	3: PA6		Embedded Trace Module ETM clock .
ETM TD0	0: PD6		Embedded Trees Medule ETM date 0
ETM_TD0	3: PA2		Embedded Trace Module ETM data 0.
ETM_TD1	3: PA3		Embedded Trace Module ETM data 1.
ETM_TD2	3: PA4	4: PE14	Embedded Trace Module ETM data 2.
ETM_TD3	3: PA5	4: PE15	Embedded Trace Module ETM data 3.
GPIO_EM4WU0	0: PA0		Pin can be used to wake the system up from EM4
GPIO_EM4WU1	0: PA6		Pin can be used to wake the system up from EM4
GPIO_EM4WU3	0: PF1		Pin can be used to wake the system up from EM4
GPIO_EM4WU4	0: PF2		Pin can be used to wake the system up from EM4
GPIO_EM4WU6	0: PC4		Pin can be used to wake the system up from EM4
GPIO_EM4WU7	0: PB11		Pin can be used to wake the system up from EM4
HFXTAL_N	0: PB14		High Frequency Crystal negative pin. Also used as external optional clock input pin.
HFXTAL_P	0: PB13		High Frequency Crystal positive pin.
12C0_SCL	0: PA1	5: PF1 7: PE5	I2C0 Serial Clock Line input / output.

Alternate	LOCATION		
Functionality	0 - 3	4 - 7	Description
1000 07.1	0: PA0	5: PF0	1000 0 110 111 111
I2C0_SDA	1: PD6		I2C0 Serial Data input / output.
1204 601	0: PC5	4: PF2	1904 Social Clock Line input / outrait
I2C1_SCL	1: PB12		I2C1 Serial Clock Line input / output.
1004 CDA	0: PC4		ISCA Coriel Data input / sutput
I2C1_SDA	1: PB11		I2C1 Serial Data input / output.
1202 601	0: PF5		ISCS Social Clock Line input / output
I2C2_SCL	2: PF11		I2C2 Serial Clock Line input / output.
I2C2_SDA	2: PF10		I2C2 Serial Data input / output.
IDAC0_OUT	0: PB11		IDAC0 output.
LCD_COM1	0: PE5		LCD driver common line number 1.
LCD_COM2	0: PE6		LCD driver common line number 2.
LCD_COM3	0: PE7		LCD driver common line number 3.
LCD_SEG0	0: PF2		LCD segment line 0.
LCD_SEG3	0: PF5		LCD segment line 3.
LCD_SEG10	0: PE14		LCD segment line 10.
LCD_SEG11	0: PE15		LCD segment line 11.
LCD_SEG12	0: PA15		LCD segment line 12.
LCD_SEG13	0: PA0		LCD segment line 13.
LCD_SEG14	0: PA1		LCD segment line 14.
LCD_SEG15	0: PA2		LCD segment line 15.
LCD_SEG16	0: PA3		LCD segment line 16.
LCD_SEG17	0: PA4		LCD segment line 17.
LCD_SEG18	0: PA5		LCD segment line 18.
LCD_SEG19	0: PA6		LCD segment line 19.
LCD_SEG20 / LCD_COM4	0: PB3		LCD segment line 20. This pin may also be used as LCD COM line 4
LCD_SEG21 / LCD_COM5	0: PB4		LCD segment line 21. This pin may also be used as LCD COM line 5
LCD_SEG22 / LCD_COM6	0: PB5		LCD segment line 22. This pin may also be used as LCD COM line 6
LCD_SEG23 / LCD_COM7	0: PB6		LCD segment line 23. This pin may also be used as LCD COM line 7
LES_ALTEX0	0: PD6		LESENSE alternate excite output 0.
LES_ALTEX2	0: PA3		LESENSE alternate excite output 2.
LES_ALTEX3	0: PA4		LESENSE alternate excite output 3.
LES_ALTEX4	0: PA5		LESENSE alternate excite output 4.
LES_CH4	0: PC4		LESENSE channel 4.

Alternate	LOC	ATION	
Functionality	0 - 3	4 - 7	Description
LES_CH5	0: PC5		LESENSE channel 5.
	0: PD6		
	1: PB11		
LETIM0_OUT0	2: PF0		Low Energy Timer LETIM0, output channel 0.
	3: PC4		
	1: PB12		
LETIM0_OUT1	2: PF1		Low Energy Timer LETIM0, output channel 1.
	3: PC5		
LETIM1_OUT0		4: PB5	Low Energy Timer LETIM1, output channel 0.
LETIM1_OUT1	0: PA6	4: PB6	Low Energy Timer LETIM1, output channel 1.
	1: PB14	4: PA0	
LEU0_RX	2: PE15		LEUART0 Receive input.
	3: PF1		
	1: PB13	4: PF2	
LEU0_TX	2: PE14		LEUART0 Transmit output. Also used as receive input in half duplex communication.
	3: PF0		
LEU1_RX	1: PA6	4: PB5	LEUART1 Receive input.
LEU1_TX	1: PA5	4: PB4	LEUART1 Transmit output. Also used as receive input in half duplex communication.
OPA0_N	0: PC5		Operational Amplifier 0 external negative input.
OPA0_P	0: PC4		Operational Amplifier 0 external positive input.
OPA1_P	0: PD6		Operational Amplifier 1 external positive input.
	3: PD6	4: PA0	
PCNT0_S0IN		6: PB5	Pulse Counter PCNT0 input number 0.
		7: PB12	
		4: PA1	
PCNT0_S1IN		6: PB6	Pulse Counter PCNT0 input number 1.
		7: PB11	
	0: PA5	6: PB11	
PCNT1_S0IN	1: PB3		Pulse Counter PCNT1 input number 0.
	3: PC4		
	0: PA6	6: PB12	
PCNT1_S1IN	1: PB4		Pulse Counter PCNT1 input number 1.
	3: PC5		
DONITO CONT	2: PB13		D. L. C. L. DONTO: L. L. C.
PCNT2_S0IN	3: PF10		Pulse Counter PCNT2 input number 0.

Alternate	LOCA	ATION	
Functionality	0 - 3	4 - 7	Description
DONITO CAINI	2: PB14		Dulas Country DONITO insult annulus of
PCNT2_S1IN	3: PF11		Pulse Counter PCNT2 input number 1.
DDC OHO	0: PA0		Design haved Deflace Constant DDC about 10
PRS_CH0	3: PF2		Peripheral Reflex System PRS, channel 0.
PRS_CH1	0: PA1		Peripheral Reflex System PRS, channel 1.
PRS_CH2	1: PF5		Peripheral Reflex System PRS, channel 2.
PRS_CH3	3: PA0		Peripheral Reflex System PRS, channel 3.
PRS_CH4	2: PF1		Peripheral Reflex System PRS, channel 4.
PRS_CH5	2: PD6		Peripheral Reflex System PRS, channel 5.
	0: PA6		
PRS_CH6	1: PB14		Peripheral Reflex System PRS, channel 6.
	2: PE6		
DDC CUZ	0: PB13		Design and Deflay Cycles DDC shapped 7
PRS_CH7	2: PE7		Peripheral Reflex System PRS, channel 7.
PRS_CH8	1: PA2		Peripheral Reflex System PRS, channel 8.
PRS_CH9	1: PA3		Peripheral Reflex System PRS, channel 9.
DDC CLIAS	1: PB6		Design and Defley Cycles DDC shapped 42
PRS_CH12	2: PD8		Peripheral Reflex System PRS, channel 12.
PRS_CH13	2: PE14		Peripheral Reflex System PRS, channel 13.
PRS_CH14	2: PE15		Peripheral Reflex System PRS, channel 14.
DDC CU15	0: PA15		Peripheral Reflex System PRS, channel 15.
PRS_CH15	2: PF0		renprieral Reliex System PRS, Charmer 15.
PRS_CH16	0: PA4		Peripheral Reflex System PRS, channel 16.
PRS_CHIO	1: PB12		renprieral Reliex System PRS, Chamier 16.
DDC CU17	0: PA5		Peripheral Defley System DDS, shappel 17
PRS_CH17	2: PE5		Peripheral Reflex System PRS, channel 17.
PRS_CH18	2: PC4		Peripheral Reflex System PRS, channel 18.
DDC CU10	0: PB3		Posinharal Deflay System DDS, shannal 40
PRS_CH19	2: PC5		Peripheral Reflex System PRS, channel 19.
PRS_CH20	0: PB4		Peripheral Reflex System PRS, channel 20.
DDS CH21	0: PB5		Paripharal Paflay System DDS, channel 21
PRS_CH21	2: PB11		Peripheral Reflex System PRS, channel 21.
QSPI0_CS0	1: PA0		Quad SPI 0 Chip Select 0.
QSPI0_CS1	1: PA1		Quad SPI 0 Chip Select 1.
QSPI0_DQ0	1: PA2		Quad SPI 0 Data 0.
QSPI0_DQ1	1: PA3		Quad SPI 0 Data 1.

Alternate	LOCA	TION	
Functionality	0 - 3	4 - 7	Description
QSPI0_DQ2 1:	: PA4		Quad SPI 0 Data 2.
QSPI0_DQ3 1:	: PA5		Quad SPI 0 Data 3.
QSPI0_DQ4 1:	: PB3		Quad SPI 0 Data 4.
QSPI0_DQ5 1:	: PB4		Quad SPI 0 Data 5.
QSPI0_DQ6 1:	: PB5		Quad SPI 0 Data 6.
QSPI0_DQ7 1:	: PB6		Quad SPI 0 Data 7.
QSPI0_DQS 1:	: PE15		Quad SPI 0 Data S.
QSPI0_SCLK 1:	: PE14		Quad SPI 0 Serial Clock.
0:	: PA0	4: PF0	
TIM0_CC0 3:	: PB6	5: PC4	Timer 0 Capture Compare input / output channel 0.
		7: PA1	
0:	: PA1	4: PF1	
TIM0_CC1		5: PC5	Timer 0 Capture Compare input / output channel 1.
		7: PA0	
TIM0_CC2 0:	: PA2	4: PF2	Timer 0 Capture Compare input / output channel 2.
TIMO_CDTIO 0:	: PA3		Timer 0 Complimentary Dead Time Insertion channel 0.
TIM0_CDTI1 0:	: PA4		Timer 0 Complimentary Dead Time Insertion channel 1.
0:	: PA5	4: PB11	
TIM0_CDTI2 2:	: PF5		Timer 0 Complimentary Dead Time Insertion channel 2.
3:	: PC4		
TIM4 000		4: PD6	Times of Continue Common insult/ autout about all C
TIM1_CC0		5: PF2	Timer 1 Capture Compare input / output channel 0.
TIM1_CC2 3:	: PB11		Timer 1 Capture Compare input / output channel 2.
	: PB3	6: PF5	Times 4 Continue Commons input / outroit sharmal 2
TIM1_CC3	: PB12		Timer 1 Capture Compare input / output channel 3.
TIM2_CC0 3:	: PF2	4: PB6	Timer 2 Capture Compare input / output channel 0.
TIM2_CC2		5: PC4	Timer 2 Capture Compare input / output channel 2.
TIM2_CDTI1 2:	: PE14		Timer 2 Complimentary Dead Time Insertion channel 1.
TIM2_CDTI2 2:	: PE15		Timer 2 Complimentary Dead Time Insertion channel 2.
0:	: PE14	4: PA0	
TIM3_CC0 3:	: PE5	5: PA3	Timer 3 Capture Compare input / output channel 0.
		6: PA6	
0:	: PE15	4: PA1	Times 2 Continue Common input / puter to the continue to
TIM3_CC1	: PE6	5: PA4	Timer 3 Capture Compare input / output channel 1.

Alternate	LOC	ATION	
Functionality	0 - 3	4 - 7	Description
	0: PA15	4: PA2	
TIM3_CC2	2: PE5	5: PA5	Timer 3 Capture Compare input / output channel 2.
	3: PE7		
TIM4_CC0	2: PF5		Timer 4 Capture Compare input / output channel 0.
TIM5_CC0	1: PE7		Timer 5 Capture Compare input / output channel 0.
TIM5_CC1	0: PE5	6: PF10	Timer 5 Capture Compare input / output channel 1.
TIM5_CC2	0: PE6	6: PF11	Timer 5 Capture Compare input / output channel 2.
TIM6_CC0		5: PB13	Timer 6 Capture Compare input / output channel 0.
TIM6_CC1		5: PB14	Timer 6 Capture Compare input / output channel 1.
TIM6_CC2		7: PD6	Timer 6 Capture Compare input / output channel 2.
TIM6_CDTI1	2: PE5		Timer 6 Complimentary Dead Time Insertion channel 1.
TIM6_CDTI2	2: PE6		Timer 6 Complimentary Dead Time Insertion channel 2.
U0_CTS	2: PA5		UART0 Clear To Send hardware flow control input.
U0_RTS	2: PA6	5: PD6	UART0 Request To Send hardware flow control output.
U0_RX	2: PA4	4: PC5	UART0 Receive input.
00_RX		5: PF2	OARTO Receive input.
U0_TX	2: PA3	4: PC4	UART0 Transmit output. Also used as receive input in half duplex communication.
00_1X		5: PF1	OAKTO Transmit output. Also used as receive input in hair duplex communication.
U1_CTS	2: PB11	4: PC4	UART1 Clear To Send hardware flow control input.
U1_RTS	2: PB12	4: PC5	UART1 Request To Send hardware flow control output.
UI_KIS	3: PE5		OAKT FRequest To Send Hardware now control output.
U1_RX	1: PF11		UART1 Receive input.
U1_TX	1: PF10		UART1 Transmit output. Also used as receive input in half duplex communication.
US0_CLK	1: PE5	4: PB13	USART0 clock input / output.
US0_CS		4: PB14	USART0 chip select input / output.
US0_CTS	0: PE14	4: PB6	USART0 Clear To Send hardware flow control input.
030_013		5: PB11	OSAIXTO Clear To Seria Hardware now control input.
US0_RTS	0: PE15	4: PB5	USART0 Request To Send hardware flow control output.
000_1110		5: PD6	OSANTO Nequest to defid hardware now control output.
US0_RX	1: PE6		USART0 Asynchronous Receive.
030_KX			USART0 Synchronous mode Master Input / Slave Output (MISO).
	1: PE7		USART0 Asynchronous Transmit. Also used as receive input in half duplex communica-
US0_TX			tion.
	0.555	5 55 (1)	USART0 Synchronous mode Master Output / Slave Input (MOSI).
US1_CLK	2: PF0	5: PB11	USART1 clock input / output.
		6: PE5	

Alternate	LOCATION			
Functionality	0 - 3	4 - 7	Description	
US1_CS	2: PF1		USART1 chip select input / output.	
US1_CTS		5: PB13	USART1 Clear To Send hardware flow control input.	
US1_RTS		5: PB14	USART1 Request To Send hardware flow control output.	
US1_RX	2: PD6	5: PA0	USART1 Asynchronous Receive.	
031_KX		6: PA2	USART1 Synchronous mode Master Input / Slave Output (MISO).	
US1_TX		5: PF2	USART1 Asynchronous Transmit. Also used as receive input in half duplex communication.	
			USART1 Synchronous mode Master Output / Slave Input (MOSI).	
	0: PC4	5: PF2		
US2_CLK	1: PB5		USART2 clock input / output.	
	3: PA15			
	0: PC5	5: PF5		
US2_CS	1: PB6		USART2 chip select input / output.	
	3: PB11			
US2_CTS	1: PB12	5: PD6	USART2 Clear To Send hardware flow control input.	
US2_RTS		5: PD8	USART2 Request To Send hardware flow control output.	
US2_RX	1: PB4	5: PF1	USART2 Asynchronous Receive.	
032_KX			USART2 Synchronous mode Master Input / Slave Output (MISO).	
US2_TX	1: PB3	5: PF0	USART2 Asynchronous Transmit. Also used as receive input in half duplex communication.	
			USART2 Synchronous mode Master Output / Slave Input (MOSI).	
US3_CLK	0: PA2		USART3 clock input / output.	
US3_CS	0: PA3		USART3 chip select input / output.	
	0: PA4			
US3_CTS	1: PE5		USART3 Clear To Send hardware flow control input.	
	2: PD6			
US3_RTS	0: PA5		USART3 Request To Send hardware flow control output.	
IIC3 DV	0: PA1		USART3 Asynchronous Receive.	
US3_RX	1: PE7		USART3 Synchronous mode Master Input / Slave Output (MISO).	
	0: PA0		USART3 Asynchronous Transmit. Also used as receive input in half duplex communica-	
US3_TX	1: PE6		tion.	
	2: PB3		USART3 Synchronous mode Master Output / Slave Input (MOSI).	
USB_DM	0: PF10		USB D- pin.	
USB_DP	0: PF11		USB D+ pin.	
USB_VBUSEN	0: PF5		USB 5 V VBUS enable.	
VDAC0_EXT	0: PD6		Digital to analog converter VDAC0 external reference input pin.	

Alternate	LOCATION		
Functionality	0 - 3	4 - 7	Description
VDAC0_OUT0 / OPA0_OUT	0: PB11		Digital to Analog Converter DAC0 output channel number 0.
VDAC0_OUT1 / OPA1_OUT	0: PB12		Digital to Analog Converter DAC0 output channel number 1.
WTIM0_CC0	1: PA6	6: PB3	Wide timer 0 Capture Compare input / output channel 0.
WTIM0_CC1	0: PE5	4: PF0 6: PB4	Wide timer 0 Capture Compare input / output channel 1.
WTIM0_CC2	0: PE6	4: PF1 6: PB5	Wide timer 0 Capture Compare input / output channel 2.
WTIM0_CDTI2		4: PD6	Wide timer 0 Complimentary Dead Time Insertion channel 2.
WTIM1_CC0	0: PB13 2: PD6	5: PE7	Wide timer 1 Capture Compare input / output channel 0.
WTIM1_CC1	0: PB14		Wide timer 1 Capture Compare input / output channel 1.
WTIM1_CC2	2: PD8	4: PE5	Wide timer 1 Capture Compare input / output channel 2.
WTIM1_CC3		4: PE6	Wide timer 1 Capture Compare input / output channel 3.
WTIM2_CC0	3: PB12		Wide timer 2 Capture Compare input / output channel 0.
WTIM2_CC2	2: PB11		Wide timer 2 Capture Compare input / output channel 2.
WTIM3_CC0		6: PB6	Wide timer 3 Capture Compare input / output channel 0.
WTIM3_CC1	3: PF10		Wide timer 3 Capture Compare input / output channel 1.
WTIM3_CC2	3: PF11		Wide timer 3 Capture Compare input / output channel 2.

Certain alternate function locations may have non-interference priority. These locations will take precedence over any other functions selected on that pin (i.e. another alternate function enabled to the same pin inadvertently).

Some alternate functions may also have high speed priority on certain locations. These locations ensure the fastest possible paths to the pins for timing-critical signals.

The following table lists the alternate functions and locations with special priority.

Table 7.4. Alternate Functionality Priority

Alternate Functionality	Location	Priority
CMU_CLK2	1: PA3	High Speed
CMU_CLKI0	1: PA3	High Speed
ETH_RMIICRSDV	0: PA4	High Speed
ETH_RMIIREFCLK	0: PA3	High Speed
ETH_RMIIRXD0	0: PA2	High Speed
ETH_RMIIRXD1	0: PA1	High Speed
ETH_RMIIRXER	0: PA5	High Speed
ETH_RMIITXD0	0: PE15	High Speed
ETH_RMIITXD1	0: PE14	High Speed

Alternate Functionality	Location	Priority
ETH_RMIITXEN	0: PA0	High Speed
TIM0_CC0	3: PB6	Non-interference
US2_CLK	5: PF2	High Speed
US2_CS	5: PF5	High Speed
US2_RX	5: PF1	High Speed
US2_TX	5: PF0	High Speed

8. Package Specifications

8.1 Package Outline

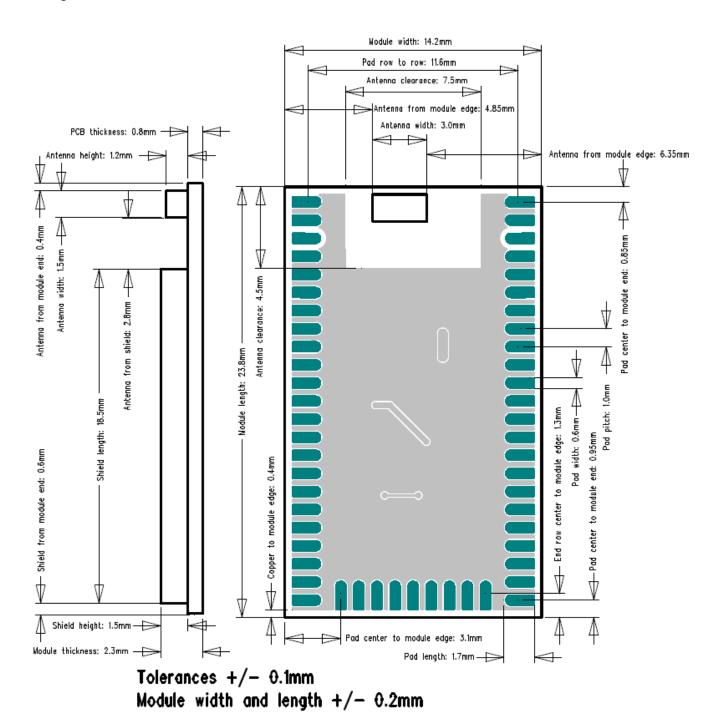


Figure 8.1. WGM160P Package Outline

8.2 Recommended PCB Land Patterns

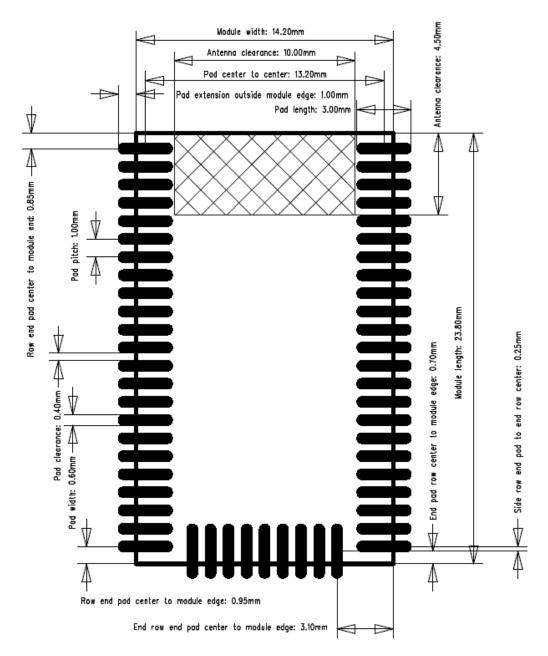


Figure 8.2. WGM160P22A Land Pattern

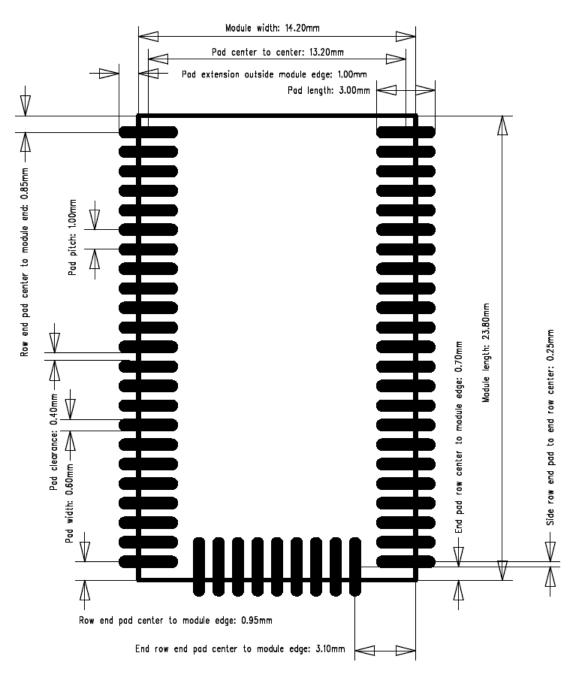
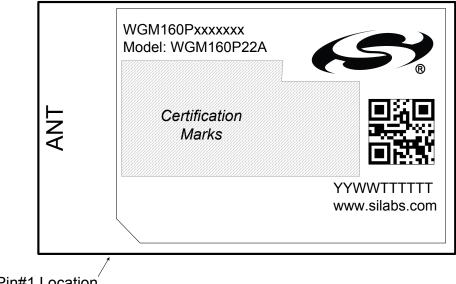



Figure 8.3. WGM160P22N Land Pattern

8.3 Package Marking

Pin#1 Location

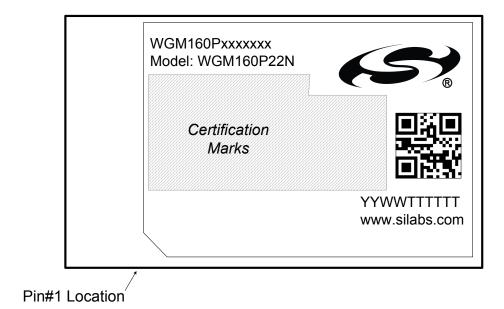


Figure 8.4. Package Marking

The package marking consists of:

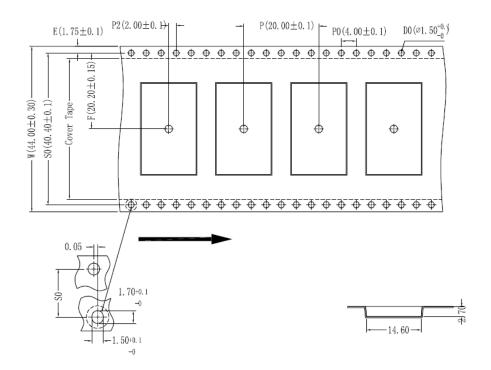
- WGM160Pxxxxxxx Part number designation
- Model: WGM160Pxxx Model number designation
- · Certification Marks All certification marks will be printed in this area according to regulatory body requirements.
- QR Code: YYWWMMABCDE
 - YY Last two digits of the assembly year.
 - WW Two-digit workweek when the device was assembled.
 - MMABCDE Silicon Labs unit code
- YYWWTTTTTT
 - YY Last two digits of the assembly year.
 - WW Two-digit workweek when the device was assembled.
 - TTTTTT Manufacturing trace code. The first letter is the device revision.

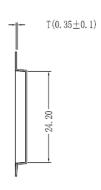
9. Soldering Recommendations

It is recommended that final PCB assembly of this product follows the industry standard as identified by the Institute for Printed Circuits (IPC). This product is assembled in compliance with the J-STD-001 requirements and the guidelines of IPC-AJ-820. Surface mounting of this product by the end user is recommended to follow IPC-A-610 to meet or exceed class 2 requirements.

CLASS 1 General Electronic Products

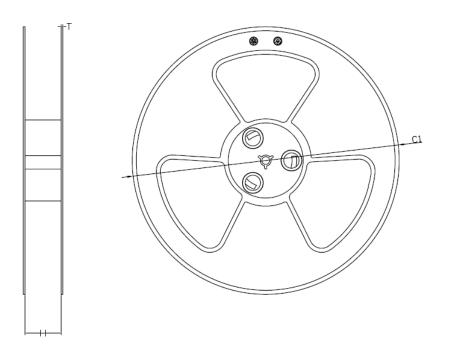
Includes products suitable for applications where the major requirement is function of the completed assembly.

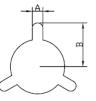

CLASS 2 Dedicated Service Electronic Products


Includes products where continued performance and extended life is required, and for which uninterrupted service is desired but not critical. Typically the end-use environment would not cause failures.

CLASS 3 High Performance/Harsh Environment Electronic Products

Includes products where continued high performance or performance-on-demand is critical, equipment downtime cannot be tolerated, end-use environment may be uncommonly harsh, and the equipment must function when required, such as life support or other critical systems.


10. Tape and Reel Dimensions



All dimensions in mm unless otherwise indicated.

Figure 10.1. Carrier Tape Dimensions

13"
\$ 330
2.6
10.8
2. 2
44. 5

All dimensions in mm unless otherwise indicated.

Figure 10.2. Reel Dimensions

11. Certifications

This section details certification status of the module in various regions.

The address for the module manufacturer and certification applicant is:

SILICON LABORATORIES FINLAND OY Alberga Business Park, Bertel Jungin aukio 3, 02600 Espoo, Finland

11.1 Qualified External Antenna Types

This device has been certified with an integrated chip antenna as well as external antennas connected to either RF port or both. The required antenna impedance is 50Ω .

Table 11.1. Qualified Antennas for WGM160P

Antenna Type	Maximum Gain
Connectorized Coaxial Dipole	2.14 dBi

Any antenna of the same general type and of equal or less directional gain as listed in the above table can be used in the regulatory areas that have a full modular radio approval (USA, Canada, Korea, Japan) as long as spot-check testing is performed to verify that no performance changes compromising compliance have been introduced. In countries applying the ETSI standards, like the EU countries, the radiated emissions are always tested with the end-product and the antenna type is not critical, but antennas with higher gain may violate some of the regulatory limits.

If an antenna of a different type (such as a chip antenna, a PCB trace antenna or a patch) with a gain less than or equal to 2.14 dBi is needed, it can be added as a permissive change, requiring some radiated emission testing. Antenna types with more gain than 2.14 dBi may require a fully new certification. Since the exact permissive change procedure is chosen on a case by case basis, please consult your test house, for example while performing with them the EMC testing of the end-product.

11.2 CE and UKCA - EU and UK

The WGM160P22A and WGM160P22N modules have been tested against the relevant harmonized/designated standards and are in conformity with the essential requirements and other relevant requirements of the Radio Equipment Directive (RED) (2014/53/EU) and of the Radio Equipment Regulations (RER) (S.I. 2017/1206).

Please notice that every end-product integrating a WGM160P22A or WGM160P22N module will need to perform the radio EMC tests on the whole assembly, according to the ETSI 301 489-x relevant standards.

Furthermore, it is ultimately the responsibility of the manufacturer to ensure the compliance of the end-product as a whole. The specific product assembly is likely to have an impact to RF radiated characteristics, when compared to the bare module. Hence, manufacturers should carefully consider RF radiated testing with the final product assembly, especially taking into account the gain of the external antenna if any, and the possible deviations in the PSD, EIRP and spurious emissions measurements, as defined in the ETSI 300 328 standard.

The modules are entitled to carry the CE and UKCA Marks, and a formal Declaration of Conformity (DoC) is available at the product web page which is reachable starting from https://www.silabs.com/.

11.3 FCC - USA

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

- 1. This device may not cause harmful interference, and
- 2. This device must accept any interference received, including interference that may cause undesirable operation.

Any changes or modifications not expressly approved by Silicon Labs could void the user's authority to operate the equipment.

FCC RF Radiation Exposure Statement:

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. End users must follow the specific operating instructions for satisfying RF exposure compliance. This transmitter meets both portable and mobile requirements in accordance to the limits exposed in the RF Exposure Analysis. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter except in accordance with FCC multi-transmitter product procedures.

OEM Responsibilities to comply with FCC Regulations:

OEM integrator is responsible for testing their end-product for any additional compliance requirements needed with this module installed (for example, digital device emissions, PC peripheral requirements, etc.). Additionally, investigative measurements and spot checking are strongly recommended to verify that the full system compliance is maintained when the module is integrated, in accordance to the "Host Product Testing Guidance" in FCC's KDB 996369 D04 Module Integration Guide V01.

- In the typical case when the integral antenna of the WGM160P22A is used, a minimum separation distance of 40 mm must be maintained at all times between the human body and the radiator (antenna) to meet the SAR exemption for portable conditions. When the WGM160P22N is used instead, the minimum separation distance is also 40 mm, unless only the RF port 2 is used with a dipole antenna, in which case the minimum distance is 37 mm.
- The transmitter module must not be co-located or operating in conjunction with any other antenna or transmitter except in accordance with FCC multi-transmitter product procedures.

Important Note:

In the event that these conditions cannot be met, then for the FCC authorization to remain valid the final product will have to undergo additional testing to evaluate the RF exposure, and a permissive change will have to be applied with the help of the customer's own Telecommunication Certification Body.

End Product Labeling

The variants of WGM160P Modules are labeled with their own FCC ID. If the FCC ID is not visible when the module is installed inside another device, then the outside of the device into which the module is installed must also display a label referring to the enclosed module. In that case, the final end product must be labeled in a visible area with the following:

"Contains Transmitter Module FCC ID: QOQWGM160P"

Or

"Contains FCC ID: QOQWGM160P"

The OEM integrator has to be aware not to provide information to the end user regarding how to install or remove this RF module or change RF related parameters in the user manual of the end product.

Class B Device Notice

Note: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- · Reorient or relocate the receiving antenna
- Increase the separation between the equipment and receiver
- · Connect the equipment into an outlet on a circuit different from that to which the receiver is connected
- · Consult the dealer or an experienced radio/TV technician for help

11.4 ISED - Canada

ISED

This radio transmitter (IC: 5123A-WGM160P) has been approved by *Innovation, Science and Economic Development Canada (ISED Canada, formerly Industry Canada*) to operate with the antenna types listed above, with the maximum permissible gain indicated. Antenna types not included in this list, having a gain greater than the maximum gain listed, are strictly prohibited for use with this device.

This device complies with ISED's license-exempt RSS standards. Operation is subject to the following two conditions:

- 1. This device may not cause interference; and
- 2. This device must accept any interference, including interference that may cause undesired operation of the device

RF Exposure Statement

Exemption from routine SAR evaluation limits are given in RSS-102 Issue 5.

The models WGM160P22A and WGM160P22N meet the given exemption requirements when the minimum separation distance between the antenna(s) and the human body is respectively 30 mm and 40 mm. In the case of the N variant, the minimum separation distance could also be 30 mm but only in the case of using exclusively the dipole antenna at RF port 2, without configuring any transmission out of RF port 1.

In other words, RF exposure or SAR evaluation is not required when the separation distance is same or more than stated above. If the separation distance is less than stated above the OEM integrator is responsible for evaluating the SAR when using the module at its highest transmission power.

OEM Responsibilities to comply with IC Regulations

The WGM160P modules have been certified for integration into products only by OEM integrators under the following conditions:

- The antenna(s) must be installed such that a minimum separation distance as stated above is maintained between the radiator (antenna) and all persons at all times.
- The transmitter module must not be co-located or operating in conjunction with any other antenna or transmitter.

As long as the two conditions above are met, further transmitter testing will not be required. However, the OEM integrator is still responsible for testing their end-product for any additional compliance requirements required with this module installed (for example, digital device emissions, PC peripheral requirements, etc.).

IMPORTANT NOTE

In the event that these conditions cannot be met, then for the ISED authorization to remain valid the final product will have to undergo additional testing to evaluate the RF exposure, and a permissive change will have to be applied with the help of the customer's own Telecommunication Certification Body.

End Product Labeling

The WGM160P module is labeled with its own ISED ID. If the ISED ID is not visible when the module is installed inside another device, then the outside of the device into which the module is installed must also display a label referring to the enclosed module. In that case, the final end product must be labeled in a visible area with the following:

"Contains Transmitter Module IC: 5123A-WGM160P"

or

"Contains IC: 5123A-WGM160P"

The OEM integrator has to be aware not to provide information to the end user regarding how to install or remove this RF module or change RF related parameters in the user manual of the end product.

CAN ICES-003 (B)

This Class B digital apparatus complies with Canadian ICES-003.

ISED (Français)

ISED a approuvé l'utilisation de cet émetteur radio (IC: 5123A-WGM160P) en conjonction avec des antennes de type dipolaire à 2.14dBi ou de son antenne intégrée. L'utilisation de tout autre type d'antenne avec ce composant est proscrite.

Ce composant est conforme aux normes RSS, exonérées de licence d'ISED. Son mode de fonctionnement est soumis aux deux conditions suivantes:

- 1. Ce composant ne doit pas générer d'interférences.
- 2. Ce composant doit pouvoir être soumis à tout type de perturbation y compris celle pouvant nuire à son bon fonctionnement.

Déclaration d'exposition RF

L'exemption tirée des limites courantes d'évaluation DAS est donnée dans le document RSS-102 Issue 5.

Les modèles WGM160P22A et WGM160P22N respectent les exigences d'exemption prévues lorsque la distance de séparation minimale entre le(s) antenne(s) et le corps humain est respectivement de 30 mm et 40 mm. Dans le cas de la variante N, la distance minimale de séparation pourrait également être de 30 mm, mais uniquement dans le cas d'une utilisation exclusive de l'antenne dipôle sur le port RF 2, sans configurer de transmission sur le port RF 1.

La déclaration d'exposition RF ou l'évaluation DAS n'est pas nécessaire lorsque la distance de séparation est identique ou supérieure à celle indiquée ci-dessus. Si la distance de séparation est inférieure à celle mentionnées plus haut, il incombe à l'intégrateur OEM de procédé à une évaluation DAS.

Responsabilités des OEM pour une mise en conformité avec le Règlement du Circuit Intégré

Le module WGM160P a été approuvé pour l'intégration dans des produits finaux exclusivement réalisés par des OEM sous les conditions suivantes:

- L'antenne (s) doit être installée de sorte qu'une distance de séparation minimale indiquée ci-dessus soit maintenue entre le radiateur (antenne) et toutes les personnes avoisinante, ce à tout moment.
- Le module émetteur ne doit pas être localisé ou fonctionner avec une autre antenne ou un autre transmetteur que celle indiquée plus haut.

Tant que les deux conditions ci-dessus sont respectées, il n'est pas nécessaire de tester ce transmetteur de façon plus poussée. Cependant, il incombe à l'intégrateur OEM de s'assurer de la bonne conformité du produit fini avec les autres normes auxquelles il pourrait être soumis de fait de l'utilisation de ce module (par exemple, les émissions des périphériques numériques, les exigences de périphériques PC, etc.).

REMARQUE IMPORTANTE

Dans le cas où ces conditions ne peuvent être satisfaites (pour certaines configurations ou co-implantation avec un autre émetteur), l'autorisation ISED n'est plus considérée comme valide et le numéro d'identification ID IC ne peut pas être apposé sur le produit final. Dans ces circonstances, l'intégrateur OEM sera responsable de la réévaluation du produit final (y compris le transmetteur) et de l'obtention d'une autorisation ISED distincte.

Étiquetage des produits finis

Les modules WGM160P sont étiquetés avec leur propre ID ISED. Si l'ID ISED n'est pas visible lorsque le module est intégré au sein d'un autre produit, cet autre produit dans lequel le module est installé devra porter une étiquette faisant apparaître la référence du module intégré. Dans un tel cas, sur le produit final doit se trouver une étiquette aisément lisible sur laquelle figurent les informations suivantes:

"Contient le module transmetteur IC: 5123A-WGM160P"

ou

"Contient le circuit IC: 5123A-WGM160P"

L'intégrateur OEM doit être conscient qu'il ne doit pas fournir, dans le manuel d'utilisation, d'informations relatives à la façon d'installer ou de d'enlever ce module RF ainsi que sur la procédure à suivre pour modifier les paramètres liés à la radio.

11.5 Locating the Module Close to Human Body

When using the module in an application where the radio is located close to human body, the human RF exposure must be evaluated. FCC, ISED, and CE all have different standards for evaluating the RF exposure, and because of this, each standard will require a different minimum separation distance between the module and human body. Certification of WGM160P allows for the minimum separation distances detailed in Table 11.2 Minimum Separation Distances for SAR Evaluation Exemption on page 42 in portable use cases (less than 20 cm from human body). The module is approved for the mobile use case (more than 20 cm) without any need for RF exposure evaluation.

Table 11.2. Minimum Separation Distances for SAR Evaluation Exemption

Certification	WGM160P with integrated antenna	WGM160P with external reference dipole antenna
FCC	40 mm	40 mm (or 37 mm when transmitting only over RF port 2)
ISED	30 mm	40 mm (or 30 mm mm when transmitting only over RF port 2)
CE	The RF exposure must always be evaluated using the end-product when transmitting with power levels higher than 20 mW = 13 dBm.	

For FCC and ISED, using the module in end products where the separation distance is smaller than those listed above is allowed but requires evaluation of the RF exposure in the final assembly and applying for a *Class 2 Permissive Change* or *Change of ID* to be applied to the existing FCC/ISED approvals of the module. For CE, RF exposure must be evaluated using the end-product in all cases.

Note: Placing the module in touch or very close to the human body will have a negative impact on the efficiency of the antenna thus reducing range.

11.6 MIC - Japan

The WGM160P22A and WGM160P22N are certified in Japan with number 005-102265 and 005-102264 respectively.

Since September 1, 2014 it is allowed (and highly recommended) that a manufacturer who integrates a radio module in their host equipment can place the certification mark and certification number (the same marking/number as depicted on the label of the radio module) on the outside of the host equipment. The certification mark and certification number must be placed close to the text in the Japanese language which is provided below. This change in the Radio Law has been made in order to enable users of the combination of host and radio module to verify if they are actually using a radio device which is approved for use in Japan.

Certification Text to be Placed on the Outside Surface of the Host Equipment:

当該機器には電波法に基づく、技術基準適合証明等を受けた特定無線設備を装着している。

Translation of the text:

"This equipment contains specified radio equipment that has been certified to the Technical Regulation Conformity Certification under the Radio Law."

The "Giteki" marking shown in the figure below must be affixed to an easily noticeable section of the specified radio equipment. Note that additional information may be required if the device is also subject to a telecom approval.

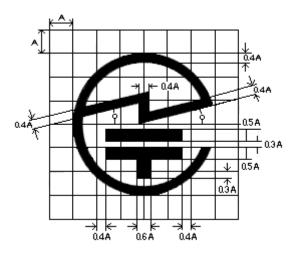


Figure 11.1. GITEKI Mark

11.7 KC - South Korea

The WGM160P22A and WGM160P22N are certified in South Korea with number R-C-BGT-WGM160P.

12. Revision History

Revision 1.2

December 2021

- Updated Certifications to take into account UK specifics (Section 1. Key Features and Section 11.2 CE and UKCA EU and UK)
- · Removed Gecko OS as a software option (Section 4.8 Microcontroller Peripherals and Section 6. Software)

Revision 1.1

September 2020

- Updated Table 2.1 Ordering Information on page 3
- Updated Figure 5.1 Example Schematic for NCP Application on page 14
- · Updated Chapter 6. Software

Revision 1.0

March 2020

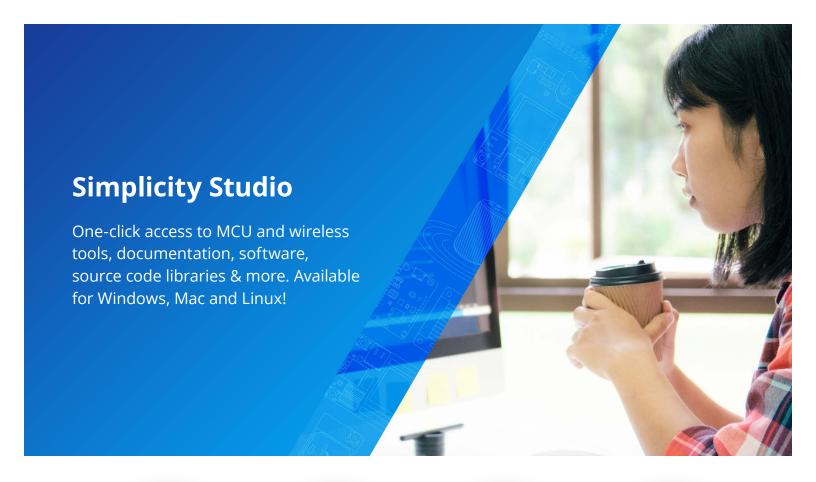
- · Removed WiFi Alliance from certifications listed in Front Page and Key Features
- Added note to Table 3.1 Supported Wi-Fi Modulations, BW, and Channels on page 6
- Added DTIM and sleep current values to Table 4.3 Power Consumption on page 8 and updated Typical standby current from 638 nA to 217 nA
- Updated Max V_{OL} from 20 to 25 % and Min V_{OH} from 80 to 75% in 4.4 Digital I/O Specifications
- Added note about peripherals supported by GeckoOS in 4.8 Microcontroller Peripherals
- Added reference to AN1224 in 5.2 Multi-Protocol Coexistence
- Corrected pin 40 naming from VUSB to VSUB in Figure 5.1
- · Added 11.6 MIC Japan and 11.7 KC South Korea certifications

Revision 0.5

April 2019

- Updated naming for Sections 7.2 GPIO Functionality and 7.3 Alternate Pin Functionality
- Removed TBD Idle currents from Table 4.3 Power Consumption on page 8 and changed term "Sleep" to "Standby"
- Updated Table 4.4 Digital I/O Specifications on page 9
- Updated Table 4.6 RF Receiver Characteristics on page 11
- Updated min PCBx_mm to 40 mm in Table 4.7 Radiated Characteristics on page 11
- Updated Section 9. Soldering Recommendations
- · Updated module manufacturer address in Section 11. Certifications
- Updated text in Sections 11.1 Qualified External Antenna Types, 11.3 FCC USA, 11.4 ISED Canada, and 11.5 Locating the Module Close to Human Body
- Updated Table 11.2 Minimum Separation Distances for SAR Evaluation Exemption on page 42

Revision 0.3


Feb 2019

- · Updated top-level device details throughout document.
- Removed software details from Section 1. Key Features (moved to Section).
- · Updated Section 2. Ordering Information to expand all OPN details.
- Corrected details in Section Figure 3.1 WGM160P Block Diagram on page 6.
- Updated all tables in Section 4. Electrical Specifications with latest nomenclature and characterization data.
- · Added Section 5.3 Example Schematic.
- · Added Section .
- · Updated pinout details in Section 7. Pin Descriptions.
- Removed functions not pinned out from Section 7.2 GPIO Functionality and 7.3 Alternate Pin Functionality.
- · Updated Section 8. Package Specifications with additional landing diagram and package marking details.
- · Added Section 9. Soldering Recommendations.
- · Added Section 10. Tape and Reel Dimensions.
- · Added Section 11. Certifications.

Revision 0.2

November 2018

· Initial release.

IoT Portfolio
www.silabs.com/IoT

SW/HW www.silabs.com/simplicity

Quality www.silabs.com/quality

Support & Community www.silabs.com/community

Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the information supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such unauthorized applications. Note: This content may contain offensive terminology that is now obsolete. Silicon Labs is replacing these term

Trademark Information

Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, Silabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Redpine Signals®, WiSeConnect, n-Link, ThreadArch®, EZLink®, EZRadio®, EZRadio®, Cecko®, Gecko OS, Gecko OS, Gecko OS Studio, Precision32®, Simplicity Studio®, Telegesis, the Telegesis Logo®, USBXpress®, Zentri, the Zentri logo and Zentri DMS, Z-Wave®, and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA