nuvoTon

ISD61S00 ChipCorder Telephony Feature Chip Design Guide

©2008 Nuvoton Technology Corporation America all rights reserved.

Important Notice

Nuvoton products are not designed, intended, authorized or warranted for use as components in systems or equipment intended for surgical implantation, atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, or for other applications intended to support or sustain life. Further more, Nuvoton products are not intended for applications wherein failure of Nuvoton products could result or lead to a situation wherein personal injury, death or severe property or environmental damage could occur.

Nuvoton customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Nuvoton for any damages resulting from such improper use or sales.

Table of Contents

1.	GENERA	AL DESCRIPTION	
2.	FEATUR	ES	
3.	PIN CON	IFIGURATION	
4.	PIN DES	CRIPTION	
5.	BLOCK D	DIAGRAM	
6.		URATION REGISTER MAP	
6.1		onfiguration Register Groups	
6.2		egister Map	
7.		STATUS	
7.1		evice Status Register	
8.		DNAL DESCRIPTION	
8.1		PI Interface	
8.2		ecord and Playback Control	
0.2	8.2.1	COMP_CFG – Compression Configuration	
	8.2.2	COMP_CTRL – Compression Control	
	8.2.3	COMP_SRC – Compression Control	
	8.2.4	CLK_CTRL – Clock Control	
	8.2.5	CFG17 – Update Mode	
8.3		lock Generation and PLL	
0.0	8.3.1	Phase Locked Loop (PLL) Design Example	
	8.3.2	PLL_CLK	
	8.3.3	PLL_FRAC	
	8.3.4	PLL_CTRL	43
8.4	Di	igital Audio Interface Control	43
	8.4.1	PCM_CFG	44
	8.4.2	PCM_TSLOTL	45
	8.4.3	PCM_TSLOTR	45
	8.4.4	PCM_COMP0	45
	8.4.5	PCM_TSLOTL1	45
	8.4.6	PCM_TSLOTR1	46
	8.4.7	PCM_COMP1	46
	8.4.8	PCM_TX_SEL	
	8.4.9	PCM_RX_SEL	
8.5		PIO and Interrupt Configuration	
	8.5.1	PORT_CFG	
	8.5.2	PORTx_IE	
	8.5.3	IE0	
	8.5.4	IE1	50
		Publication Release	Date: March 10, 2011
		- 2 -	Revision 2.7

nuvoTon

	8.5.5	PORTA_DO	
	8.5.6	PORTA_OE	
	8.5.7	PORTA_PE	
	8.5.8	PORTA_DI	51
	8.5.9	PORTA_PS	51
	8.5.10	PORTA_DS	51
	8.5.11	PORTA_AF	51
8.6	16	bit Indirect Index register R0-R7	53
8.7		crophone interface and Auxiliary Interface	
	8.7.1	MIC_CTRL	
	8.7.2	MIC_BIAS	
8.8	PS	TN Analog Input	60
	8.8.1	TI_GAIN	
	8.8.2	TI_CTRL	61
8.9	An	alog Outputs	63
	8.9.1	ANA_OUT	64
	8.9.2	ANA_CTRL	64
8.10	DT	MF Detection	65
	8.10.1	DTMF_CTRL	67
	8.10.2	DTMF_FIFO_CTRL	
	8.10.3	DTMF_FIFO	
	8.10.4	DTMF_FIFO_STATUS	
	8.10.5	DTMF_THRES	
	8.10.6	DTMF_PDT	
	8.10.7	DTMF_ADT	70
	8.10.8	DTMF_ACCT	70
	8.10.9	70	
	8.10.10	DTMF_RX_DATA	70
	8.10.11	DTMF_ROW_FREQ	71
	8.10.12	DTMF_COL_FREQ	71
	8.10.13	Tip & Tricks	71
8.11	DT	MF and Arbitrary Tone Generation	72
	8.11.1	TONE_CTRL	73
	8.11.2	TONE_FREQ_A	73
	8.11.3	TONE_FREQ_B	74
	8.11.4	TONE_LEVEL_A	74
	8.11.5	TONE_LEVEL_B	74
	8.11.6	TONE_ON_TIME	74
	8.11.7	TONE_OFF_TIME	75
	8.11.8	TONE_LENGTH	
	8.11.9	75	
	8.11.10	TONE_INDEX_0 ~ TONE_INDEX_A	
8.12	FS	K Generation	76
	8.12.1	FSKE_CTRL1	

Publication Release Date: March 10, 2011 Revision 2.7

nuvoTon

	8.12.2	FSKE_CTRL2	
	8.12.3	FSKE_TX_DATA	
	8.12.4	FSKE_STATUS	79
	8.12.5	FSKE_GAIN	79
	8.12.6	FSKE_PROG	79
	8.12.7	FSKE_BAUD (SW_MODE = 1)	80
	8.12.8	FSKE_MARK_FREQ (SW_MODE = 1)	
	8.12.9	FSKE_SPACE_FREQ (SW_MODE = 1)	81
	8.12.10	FSKE_TEST	81
	8.12.11	81	
	8.12.12	Example FSK Generator Usage	
8.13	FS	K Detection	
	8.13.1	FSKD_CTRL	
	8.13.2	FSKD_MODE	
	8.13.3	FSKD_ADJUST	
	8.13.4	FSKD_STATUS	
	8.13.5	FSKD_THRES	
	8.13.6	FSKD_JUDGE	
	8.13.7	FSKD_SYNC	
	8.13.8	FSKD_CDET	
	8.13.9	FSKD_FIFO_CTRL	
	8.13.10	FSKD_FIFO_DOUT	
	8.13.11	FSKD_FIFO_STATUS	
	8.13.12	FSKD_ENERGY_HIGH_TH	
	8.13.13	FSKD_ENERGY_LOW_TH	
	8.13.14	FSKD_ENERGY_TC	
	8.13.15	93	
	8.13.16	FSKD_CDB_FREQ_LOW_CNT	
	8.13.17	FSKD_CDB_FREQ_HIGH_CNT	
	8.13.18	FSKD_LIMIT_TH	94
	8.13.19	Example FSK Detector Usage	
8.14	CA	S and Arbitrary Tone (ATD) Detector	99
	8.14.1	CAS_CTRL	
	8.14.2	CAS_THRES_LOW – CAS detector low threshold	
	8.14.3	CAS_MULT	
	8.14.4	CAS_PRESENT	
	8.14.5	CAS_ABSENT	
	8.14.6	CAS_STATUS	
	8.14.7	CAS_MODE - Arbitrary Tone Detection Mode	
	8.14.8	ATD_MAX_HFC (ATD_MODE = 1)	
	8.14.9	ATD_MIN_HFC (ATD_MODE = 1)	
	8.14.10	ATD_MAX_LFC (ATD_MODE = 1)	
	8.14.11	ATD_MIN_LFC (ATD_MODE = 1)	
	8.14.12	External Dual-IIR Coefficient (ATD_MODE= 1)	

Publication Release Date: March 10, 2011 Revision 2.7

	8.14.13	FSK_COEFF – FSK Encoder Coefficient RAM Data	107
	8.14.14	FSK_COEFF_ADDR - FSK Encoder Coefficient RAM Address	
	8.14.15	CAS_MAX_HFC (FINE_TUNE = 1)	
	8.14.16	CAS_MIN_HFC (FINE_TUNE = 1)	109
	8.14.17	CAS_MAX_LFC (FINE_TUNE = 1)	
	8.14.18	CAS_MIN_LFC (FINE_TUNE = 1)	
	8.14.19	110	
	8.14.20	110	
	8.14.21	Arbitrary Tone Detector Example	110
8.15	Voi	ice Energy Detection (Speech Energy Detection)	
	8.15.1	VD_CTRL	
	8.15.2	VD_STATUS	
	8.15.3	VD_THRES	
	8.15.4	VD_ENERGY	116
8.16	Cal	Il Progress Tone Detector	
	8.16.1	CPT_CTRL	
	8.16.2	CPT_STATUS	
	8.16.3	CPT_THRES_H	
	8.16.4	CPT_THRES_L	118
	8.16.5	CPT_ENERGY	
8.17	Rin	ng Detection and Pulse / Period Width Measurement	119
	8.17.1	RNG_CTRL	120
	8.17.2	RNG_STATE	122
	8.17.3	RNG_CNTR	122
	8.17.4	RNG_LATCH	123
	8.17.5	123	
8.18	Tim	ner	123
	8.18.1	123	
	8.18.2	TIME_TARG	124
	8.18.3	TIME_CNT	124
8.19	Ga	in Stage and Mixer	124
	8.19.1	GS_CTRL	128
	8.19.2	CODEC EC Gain Stages	129
	8.19.3	AECin Path Mixing Gain Control	130
	8.19.4	LECin Path Mixing Gain Control	130
	8.19.5	REC Path Mixing Gain Control Registers	131
	8.19.6	I2SLin Path Mixing Gain Control Registers	132
	8.19.7	I2SRin Path Mixing Gain Control Registers	132
	8.19.8	Mixer Source Enable Registers	133
8.20	Air	and Line CODEC	133
	8.20.1	AC_EN, LC_EN – Air /Line CODEC Enable Register	134
	8.20.2	AC_CTRL, LC_CTRL – Air /Line CODEC Dither Control	135
	8.20.3	AC_ADCG, LC_ADCG – Air/Line CODEC ADC Gain	135
	8.20.4	AC_DACG, LC_DACG – Air/Line CODEC DAC Gain.	135

	8.20.5	136	
	8.20.6	136	
8.21	RI	INGER TONE GENERATOR	
	8.21.1	PWM Clock	
	8.21.2	PWM Tone1 Control	
	8.21.3	PWM Tone1 Frequency	
	8.21.4	PWM Tone2 Control	
	8.21.5	PWM Tone2 Frequency	
9.	ACOUST	IC PROCESSING BLOCK	
9.1	Fu	ull/Half AEC Block Diagram	
9.2		ontrol Register Memory Map	
	9.2.1	Threshold and Power Calculation	
9.3	Co	ontrol Registers	
	9.3.1	CONFIG	
	9.3.2	RESET	
	9.3.3	EC_BELTA	
	9.3.4		
9.4		ouble Talk Detector Control Registers	
	9.4.1	Function	
	9.4.2	DT_LONG_TC	
	9.4.3	 DT_SHORT_TC	
	9.4.4	Double Talk Detector Parameters	
	9.4.5	DIVERGENCE	
9.5	Vo	Dice Detector Control Registers	
	9.5.1	Function	
	9.5.2	VD_LONG_TC	
	9.5.3		
	9.5.4	Voice Detector Parameters	
	VD_AVE_		
	9.5.5	VD_AVE_THRESH	
9.6	AS	S1 & AS2 Control Registers	
	9.6.1	Function	
	9.6.2	AS1_BUILD_UP_TIME	
	9.6.3	AS1_MAX_ATTEN	
	9.6.4	AS2_BUILD_UP_TIME	
	9.6.5	AS2_MAX_ATTEN	
9.7	N	oise Suppressor Registers	
	9.7.1	Function	
	9.7.2	NS_POWER_ATTACK_TC	
	9.7.3	NS_ATTEN _TC	
	9.7.4	NS_ACTIVE_THRESHOLD	
9.8	15		
9.9	-	oft Clip (SC) Control Registers	156
0.0	00		
		Publication	Release Date: March 10, 2011 Provision 2, 2
		- 0 -	Revision 2.7

	9.9.1	Functional Description	
	9.9.2	SC_CTRL	
	9.9.3	SC_NORMAL_INDEX	
	9.9.4	SC_LOW_INDEX	158
	9.9.5	SC_THRESH	158
	9.9.6	SC_POWER_ATTACK_TC	158
	9.9.7	SC_GAIN_TC	159
9.10	State	e Read back Registers	159
	9.10.1	Functional Description	
	9.10.2	Power Monitor	159
	9.10.3	Signal Monitor	160
9.11	160		
9.12	Auto	matic Gain Control	
	9.12.1	AGC_CTRL	
	9.12.2	AGC_INIT_GAIN	
	9.12.3	AGC_GAIN_HOLD	
	9.12.4	AGC_INC_DEC	
	9.12.5	AGC_ATK_DCY	
	9.12.6	AGC_GAIN_READ	
	9.12.7	AGC_STATE	
	9.12.8	AGC_PWR_TC	
	9.12.9	AGC_PK_TC	165
	9.12.10	AGC_PK	165
	9.12.11	AGC TARGETS	165
	9.12.12	AGC NOISE PARAMETERS	166
10.	SPI COMM	ANDS	
10.1	Audi	o Play and Record Commands	169
	10.1.1	Play Voice Prompt	
	10.1.2	Play Voice Prompt @Rn, n = 0 ~ 7	170
	10.1.3	Play Voice Prompt, Loop	170
	10.1.4	Play Voice Prompt, Loop, @Rn, n = 0 ~ 7	172
	10.1.5	Stop Loop-Play Command	172
	10.1.6	Execute Voice Macro	172
	10.1.7	Execute Voice Macro @Rn, n = 0 ~ 7	173
	10.1.8	Record Message	173
	10.1.9	Record Message at Address	174
	10.1.10	Play Message at Address	174
	10.1.11	Play Silence	175
	10.1.12	Stop Command	175
	10.1.13	Erase Message at Address	176
	10.1.14	SPI Send Audio Data	176
	10.1.15	SPI Receive Audio Data	177
	10.1.16	SPI Send Compressed Audio Data for direct programming to flash	179
		Publication Release Date - 7 -	e: March 10, 2011 Revision 2.7

nuvoTon

	10.1.17	SPI Receive previous REC_MSG or REC_MSG@ compressed A 180	Audio Data stored in flash
	10.1.18	SPI Send Compressed Data to Decode	
	10.1.19	SPI Receive Encoded Data	
10.2	De	vice Status Commands	
	10.2.1	Read Status	
	10.2.2	Read Interrupt	
	10.2.3	Read Recorded Message Address Details	
	10.2.4	Read Message Length	
	10.2.5	Read ISD61S00 ID	
10.3	Dig	gital Memory Commands	
	10.3.1	Digital Read	
	10.3.2	Digital Write	
	10.3.3	Erase Memory	
	10.3.4	Chip Erase	
	10.3.5	CHECKSUM	
10.4	De	vice Configuration Commands	
	10.4.1	PWR_UP – Power up	
	10.4.2	PWR_DN – Power Down	
	10.4.3	WR_CFG_REG – Write Configuration Register	
	10.4.4	RD_CFG_REG – Read Configuration Register	
10.5	De	vice Power Up Sequence	
11.	ISD61S00		
11.1	ISE	D61S00 Memory Format	
11.2		essage Management	
	11.2.1	Voice Prompts	
	11.2.2	Voice Macros	
	11.2.3	User Data	
	11.2.4	Reserved Sectors	
	11.2.5	Message Recordings	
11.3	Me	emory and Message Headers	193
	11.3.1	Memory Header	
	11.3.2	Message Header	
11.4	Dig	gital Access of Memory	194
11.5	De	vice Erase Commands	195
11.6		emory Contents Protection	
12.		NITIALIZATION	
13.		TION REFERENCE SCHEMATICS	
13.1		B Layout Guidelines	
14.		E SPECIFICATION	
14.1		PP48L (7x7x1.4mm footprint 2.0mm)	
15.		CAL CHARACTERISTICS	
15.1	Ab	solute Maximum Ratings	

Publication Release Date: March 10, 2011 Revision 2.7

ηυνοτοη

15.2		Operating Conditions	200
15.3		DC Parameters	201
15.4		Analog Transmission Characteristics	202
15.5		Analog Distortion and Noise Parameters	202
	15.5.1	8kHz sampling	202
	15.5.2	16kHz sampling	203
15.6		SPI Timing	203
15.7		Recommended Clock/Crystal Specification	204
15.8		Dual Tone Alert Signal (CAS)	205
15.9		FSK Detection - 1200baud Bell 202, ITU V.23, 300 baud Bell 103, ITU V.21	206
15.10		FSK Transmitter – Bell 202, ITU-V.23, Bell 103, ITU-V.21	208
15.11		DTMF Detection	209
16.	ORDE	RING INFORMATION	210
17.	REVIS	ION HISTORY	
17.	REVIS		····· ∠ I

1. GENERAL DESCRIPTION

The ISD61S00 is a feature chip for the security and telephony industry. The device incorporates audio storage with a powerful macro scripting ability to facilitate audio prompting in a multi-language environment and simple address-free recording and playback. It utilizes external serial flash memory for audio data storage. In addition, the device includes circuitry to perform telephony based data communications including DTMF detection and generation, FSK modem functions from 75-1200 baud, CAS and CPT (Call Progress Tone) detection and ring detection. The audio path of the device is designed to interface to both the air side and line side of a PSTN system. The air side includes a flexible microphone interface incorporating a bias generator and gain control and a differential analog output for driving a speaker or power amplifier. The line side incorporates a line driver to drive PSTN loads and two variable gain differential inputs. The audio path includes full and half-duplex acoustic and line echo cancellation to implement full and half-duplex speakerphone functions. The digital audio interface can be configured to I²S or PCM mode for digital serial audio communication. Control, monitoring and device programming is performed via a SPI interface. The device package is LQFP-48L.

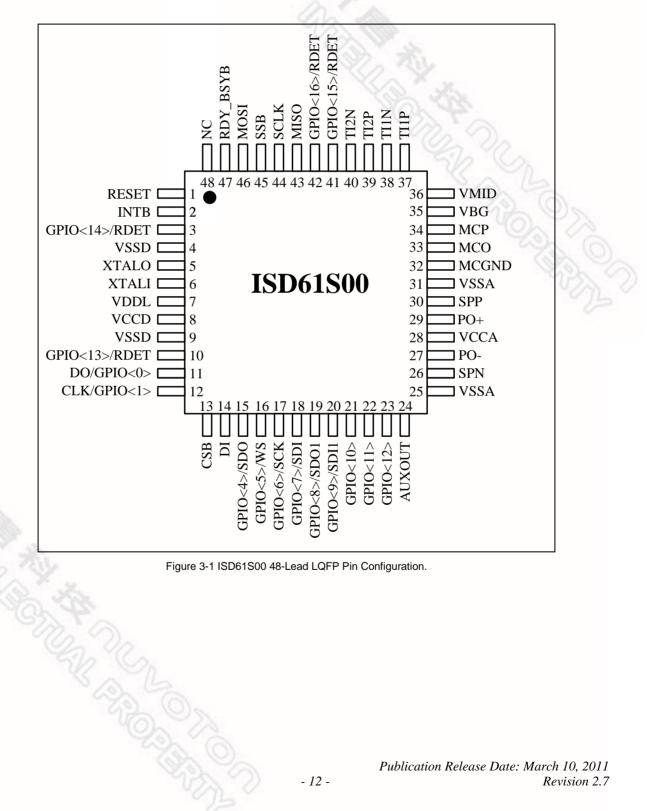
2. FEATURES

- External Memory:
 - The ISD61S00 supports the following flash:

Manufacturer	Wint	oond	Numonyx			MXIC
Family	25X	25Q	25P	25PX	25PE	25L / 25V
JEDEC ID	EF 30 1X	EF 40 1X	20 20 1X	20 71 1X	20 80 1X	C2 20 1X

- The addressing ability of ISD61S00 is up to 128Mbit, which is 64-minute record/playback time based on 8kHz/4bit ADPCM.
- Fast pre-recording: Recording is limited by the write rate of the attached external flash.
- Operating voltage: 2.7-3.6V.
- Sampling frequency: Recording and playback sampling frequencies of 4, 5.3, 6.4, 8, 10.6, 12.8 and 16 kHz.
- Compression algorithm:
 - For record and playback:
 - ADPCM compression at 2, 3, 4 or 5 bits per sample.
 - \circ µ-Law companding at 6, 7 or 8 bits per sample.
 - \circ Differential μ -Law encoding at 6, 7 or 8 bits per sample.
 - PCM encoding at 8, 10 or 12 bits per sample.
- For pre-recorded audio playback (Voice prompts) additionally:
 - Enhanced ADPCM compression at 2, 3, 4 or 5 bits per sample.
 - Multi-Bit rate optimized compression. This allows best possible compression given a metric of SNR and background noise levels.
- Message Management:
 - Simple address free real-time recording.
 - Flexible Voice Prompt message management and Voice Macro scripting for pre-recorded messages.
- External serial flash memory interface: Support up to 128Mbit for audio and digital data storage, equivalent to 64 minutes based on 8khz 4bit ADPCM.
- Digital access to flash memory: Memory can be reserved on a 4Kbyte sector basis for use as

nuvoTon


conventional digital memory by host.

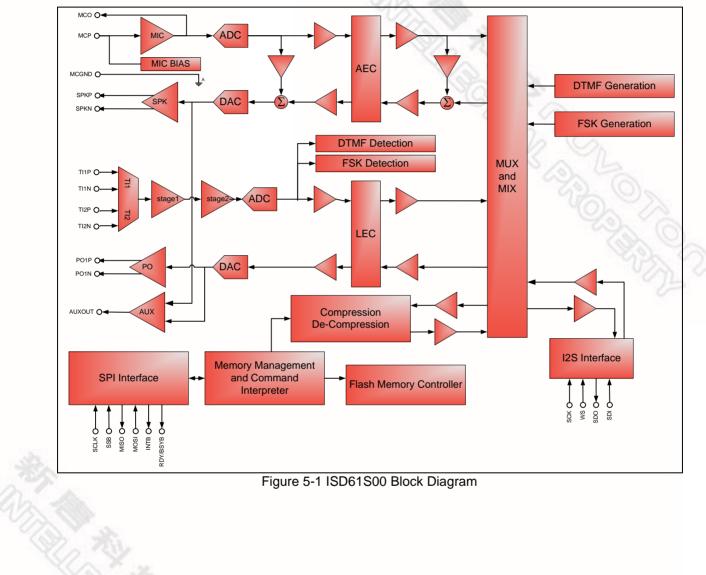
- Telephony/Modem/Data Features at 8KHz CODEC sampling rate:
 - o DTMF encoder with 20 digit dial string buffer.
 - DTMF detector.
 - FSK generation at 75/110/150/300/1200 baud for Bell 103, Bell 202, V.21 or V.23 modem standards. Transmit FIFO to reduce host interaction.
 - FSK detector at 75/110/150/300/1200 baud for Bell 103, Bell 202, V.21 or V.23 modem standards with receive FIFO.
 - o Ring Detector.
 - Call Progress Tone (CPT) detector for detecting dial tones, busy tones etc.
 - CAS detector for caller ID type I, type II implementation.
 - Arbitrary dual tone generator.
 - Arbitrary tone detector.
- Acoustic Echo Cancellation (AEC), Line Echo Cancellation (LEC) and Automatic Gain Control (AGC) for on-chip speakerphone support.
- Up to 17 GPIO pins accessible through the SPI interface.
- Audio Input:
 - o TI1 and TI2: Differential Analog inputs for PSTN interface (on-hook and off-hook).
 - MIC+/-: Analog interface to microphone.
- Audio Output:
 - PO: Differential Analog output for PSTN interface.
 - SPK: Differential output buffer for speaker driver.
- I/O:
 - o SPI interface: MISO, MOSI, SCLK, SS for commands and digital audio data.
 - INT and R/B signal for signaling and flow control.
- Package: Green LQFP-48L
- Temperature: -40°C to 85°C

3. PIN CONFIGURATION

4. PIN DESCRIPTION

Pin Number	Pin Name	I/O	Function	Drive
1	RESET	I	Raising this pin to VCC will reset the chip.	N/A
2	INTB	0	Active low interrupt request pin. This pin has an open drain output.	4/8mA
3	GPIO<14>/RDET	I/O*	General Purpose IO Pin or the Ring Detect input (RDET).	4/8mA
4	VSSD	G	Digital Ground.	N/A
5	XTALOUT	0	Crystal Interface output pin.	N/A
6	XTALIN	I	Crystal interface input pin. It can also be used to provide an external clock to the device.	N/A
7	VDDL	0	This pin has a nominal 1.8V output to supply the internal logic. A 2.2nF capacitor should be connected to this pin.	N/A
8	VCCD	Р	Digital power supply pin	N/A
9	VSSD	G	Digital Ground.	N/A
10	GPIO<13>/RDET	I/O*	General Purpose IO Pin.	4/8mA
11	DO/GPIO<0>	I/O	Flash interface data out. Alternatively General Purpose IO Pin.	4/8mA
12	CLK/GPIO<1>	I/O	Flash interface clock. Alternatively General Purpose IO Pin.	4/8mA
13	CSB	0	Flash interface chip select bar.	4/8mA
14	DI	I	Flash interface data in.	4/8mA
15	GPIO<4>/SDO	I/O*	General Purpose IO Pin. Serial Data Out for the I2S interface.	8/16m/
16	GPIO<5>/WS	I/O*	General Purpose IO Pin. Word Select (WS) output for the I2S Interface	8/16m/
17	GPIO<6>/SCK	I/O*	General Purpose IO Pin. Serial Clock output for the I2S Interface	8/16m/
18	GPIO<7>/SDI	I/O*	General Purpose IO Pin. Serial Data Input (SDI) input pin for the I2S Interface.	8/16m/
19	GPIO<8>/SDO1	I/O*	General Purpose IO Pin. Secondary Serial Data Out for the I2S interface.	4/8mA
20	GPIO<9>SDI1	I/O*	General Purpose IO Pin. Secondary Serial Data Input (SDI) input pin for the I2S Interface.	4/8mA

21	GPIO<10>	I/O*	General Purpose IO Pin.	4/8mA
22	GPIO<11>	I/O*	General Purpose IO Pin or the Ring Detect input (RDET).	4/8mA
23	GPIO<12>	I/O*	General Purpose IO Pin.	4/8mA
24	AUXOUT	0	Auxiliary output from PSTN or SPEAKER DAC.	N/A
25	VSSA	G	Analog Ground Pin	N/A
26	SPKN	0	Negative speaker driver output	N/A
27	PO-	0	Negative line driver output	N/A
28	VCCA	Р	Analog Power Pin	N/A
29	PO+	0	Positive line driver output	N/A
30	SPKP	0	Positive speaker driver output	N/A
31	VSSA	G	Analog Ground Pin	N/A
32	MCGND	I	Analog ground pin for MIC. This pin should be connected to a quiet VSSA and used as the return for microphones connected to MCP.	N/A
33	MCO	I/O	MIC feedback signal	N/A
34	MCP	I	Positive MIC signal input.	N/A
35	VBG	I/O	Voltage reference, a 100nF capacitor should be connected to this pin.	N/A
36	VMID	I/O	Voltage reference, a 4.7uF capacitor should be connected to this pin.	N/A
37	TI1P	I	PSTN Line #1 positive input	N/A
38	TI1N	I	PSTN Line #1 negative input	N/A
39	TI2P	I	PSTN Line #2 positive input	N/A
40	TI2N	I	PSTN Line #2 negative input	N/A
41	GPIO<15>/RDET	I/O*	General Purpose IO Pin. Can be configured as Ring Detect (RDET) input.	4/8mA
42	GPIO<16>/RDET	I/O*	General Purpose IO Pin. Can be configured as Ring Detect (RDET) input.	4/8mA
43	MISO	0	SPI slave serial data output from the ISD61S00 to the host. This pin is tri-stated when SSB=1.	4/8mA
44	SCLK	I	SPI serial Clock input to the ISD61S00 from the host.	N/A
45	SSB		Slave select input to the ISD61S00 from the host	N/A
46	MOSI	I	SPI slave serial data input to the ISD61S00 from the host.	4/8mA


47	RDY/BSYB	0	This pin is at VCCD when the chip is ready to accept a new command/data and is at VSSD when device is busy.	
48	NC		and the second s	

* Default state for digital I/O pins is input with internal pull-up [38Kohms to 83Kohms] to VCCD supply

5. BLOCK DIAGRAM

Figure 5-1 ISD61S00 Block Diagram

Publication Release Date: March 10, 2011 Revision 2.7

6. CONFIGURATION REGISTER MAP

6.1 Configuration Register Groups

Data memory address	Size (Byte)		- Function	
Data memory address	Usage	ALL		
0x000 ~ 0x0FF		256	Device Control Registers	
0x110 ~ 0x13F		32	Gain stage and Mixer Control Registers	
0x140 ~ 0x14F		16	Air CODEC Control	
0x150 ~ 0x15F		16	Line CODEC Control	
0x160 ~ 0x17F		32	FSK Encoder Control	
0x180 ~ 0x19F		32	FSK Decoder Control	
0x1A0 ~ 0x1AF		16	Ringer Tone(PWM) Control Registers	
0x1B0 ~ 0x1BF		16	Ring Detection PPM Control	
0x1CO ~ 0x1DF		32	DTMF and Tone Generation	
0x1E0 ~ 0x1EF		16	DTMF Detection Control	
0x1F0 ~ 0x1FF		16	Voice Energy Detection Control	
0x200 ~ 0x27F		128	CAS Detection Control	
0x280 ~ 0x28F		16	CPT Detector Control	
0x290 ~ 0x29F		16	Timer Control	
0x300 ~ 0x3FF		256	AEC/LEC Control	

6.2 Register Map

Addr.	Name	Mode	Value At Reset	Function	
0x000	AUD	R/W	0x64	Compression & SR ctrl	<u>8.2.1</u>
0x001	REG1	R/W	0x00	Compression Control	<u>8.2.2</u>
0x002	REG2	R/W	0x00	Compression Source	<u>8.2.3</u>
0x003	REG3	R/W	0x03	Clock Control	<u>8.2.4</u>
0x004	TI_GAIN	R/W	0x00	Input Amplifier Gain	<u>8.8.1</u>
0x005	TI_CTRL	R/W	0x00	Input Amplifier Control	<u>8.8.2</u>
0x006	MIC_CTRL	R/W	0x00	MIC Interface Control	<u>8.7.1</u>

- 17 -

	Function	Value At Reset	Mode	Name	Addr.
<u>8.7.2</u>	MIC Interface Bias	0x00	R/W	MIC_BIAS	0x007
<u>8.9.1</u>	Analog Output Control	0x00	R/W	ANA_OUT	0x008
8.8.2	Analog Control	0x10	R/W	ANA_CTRL	0x009
	Memory Control	0x00	R/W	ID_OVR	0x00A
8.5.1	GPIO INT Ctrl	0x00	R/W	PORT_CFG	0x00B
8.5.2	Port A INT Enable	0x00	R/W	PORTA_IE	0x00C
8.5.2	Port B INT Enable	0x00	R/W	PORTB_IE	0x00D
8.5.2	Port C INT Enable	0x00	R/W	PORTC_IE	0x00E
8.5.2	Digital PLL Control	0x00	R/W	DPLL Control	0x00F
8.5.3	INT Enable 0	0xFF	R/W	IEO	0x014
8.5.4	INT Enable 1	0xFF	R/W	IE1	0x015
8.2.5	Update Ctrl	0x01	R/W	UPDATE_MD	0x017
(0)	Check sum control	0x01	R/W	CHK_SUM_CTRL	0x018
8.5.5	Port A Dout	0x00	R/W	PORTA_DO	0x019
<u>8.5.6</u>	Port A Output Enable	0x00	R/W	PORTA_OE	0x01A
8.5.7	Port A Pull Enable	0xFF	R/W	PORTA_PE	0x01B
8.5.8	Port A Din	NA	R	PORTA_DI	0x01C
8.5.9	Port A pull Select	0xFF	R/W	PORTA_PS	0x01D
<u>8.5.1</u>	Port A Drive Strength	0x00	R/W	PORTA_DS	0x01E
8.5.1	Port A Alternate Function	0x03	R/W	PORTA_AF	0x01F
<u>8.6</u>	Indirect reg R0 LSB	0x00	R/W	R0_LSB	0x020
<u>8.6</u>	Indirect reg R0	0x00	R/W	R0	0x021
<u>8.6</u>	Indirect reg R1 LSB	0x00	R/W	R1_LSB	0x022
<u>8.6</u>	Indirect reg R1	0x00	R/W	R1	0x023
<u>8.6</u>	Indirect reg R2 LSB	0x00	R/W	R2_LSB	0x024
<u>8.6</u>	Indirect reg R2	0x00	R/W	R2	0x025
<u>8.6</u>	Indirect reg R3 LSB	0x00	R/W	R3_LSB	0x026
<u>8.6</u>	Indirect reg R3	0x00	R/W	R3	0x027
<u>8.6</u>	Indirect reg R4 LSB	0x00	R/W	R4_LSB	0x028
<u>8.6</u>	Indirect reg R4	0x00	R/W	R4	0x029
<u>8.6</u>	Indirect reg R5 LSB	0x00	R/W	R5_LSB	0x02A
<u>8.6</u>	Indirect reg R5	0x00	R/W	R5	0x02B
<u>8.6</u>	Indirect reg R6 LSB	0x00	R/W	R6_LSB	0x02C
8.6	Indirect reg R6	0x00	R/W	R6	0x02D

	Function	Value At Reset	Mode	Name	Addr.
<u>8.6</u>	Indirect reg R7 LSB	0x00	R/W	R7_LSB	0x02E
<u>8.6</u>	Indirect reg R7	0x00	R/W	R7	0x02F
<u>8.5</u>	Port B Dout	0x00	R/W	PORTB_DO	0x030
<u>8.5</u>	Port B Output Enable	0x00	R/W	PORTB_OE	0x031
<u>8.5</u>	Port B Pull Enable	0xFF	R/W	PORTB_PE	0x032
<u>8.5</u>	Port B Din	NA	R	PORTB_DI	0x033
<u>8.5</u>	Port B pull Select	0xFF	R/W	PORTB_PS	0x034
<u>8.5</u>	Port B Drive Strength	0x00	R/W	PORTB_DS	0x035
8.5.1	Port B Alternate Function	0x00	R/W	PORTB_AF	0x036
<u>8.5</u>	Port C Dout	0x00	R/W	PORTC_DO	0x037
<u>8.5</u>	Port C Output Enable	0x00	R/W	PORTC_OE	0x038
<u>8.5</u>	Port C Pull Enable	0xFF	R/W	PORTC_PE	0x039
8.5	Port C Din	NA	R	PORTC_DI	0x03A
<u>8.5</u>	Port C pull Select	0xFF	R/W	PORTC_PS	0x03B
<u>8.5</u>	Port C Drive Strength	0x00	R/W	PORTC_DS	0x03C
<u>8.5</u>	Port C Alternate Function	0xFC	R/W	PORTC_AF	0x03D
8.3.2	PLL Clock Control	0x20	R/W	PLL_CLK	0x040
8.3.3	PLL Fraction MSB	0x00	R/W	PLL_K2	0x041
8.3.3	PLL Fraction byte 1	0x00	R/W	PLL_K1	0x042
8.3.3	PLL Fraction LSB	0x00	R/W	PLL_K0	0x043
<u>8.3.4</u>	PLL Control Register	0x88	R/W	PLL_CTRL	0x044
8.4.1	PCM Configuration	0x00	R/W	PCM_CFG	0x050
<u>8.4.2</u>	Left Channel PCM MSB start	0x01	R/W	PCM_TSLOTL	0x051
8.4.3	Right Channel PCM MSB start	0x11	R/W	PCM_TSLOTR	0x052
8.4.4	PCM0 Compression	0x00	R/W	PCM_COMP0	0x053
<u>8.4.5</u>	Left Channel PCM1 MSB start	0x01	R/W	PCM_TSLOTL1	0x054
8.4.6	Right Channel PCM1 MSB start	0x11	R/W	PCM_TSLOTR1	0x055
<u>8.4.7</u>	PCM1 Compression	0x00	R/W	PCM_COMP1	0x056
<u>8.4.8</u>	PCM Transmission Select	0x00	R/W	PCM_TX_SEL	0x057
<u>8.4.9</u>	PCM Receive Select	0x00	R/W	PCM_RX_SEL	0x058
	Chksum1[7:0]	0x00	R	CHKSUM SUM1 LSB	0x059
	Chksum1[15:8]	0x00	R	CHKSUM SUM1	0x05A
	Chksum2[7:0]	0x00	R	CHKSUM SUM2 LSB	0x05B
	Chksum2[15:8]	0x00	R	CHKSUM SUM2	0x05C

	Function	Value At Reset	Mode	Name	Addr.
	REC Message Sector Length [7:0]	0x00	R/W	REC_MSG_LEN LSB	0x05D
	REC Message Sector Length [15:8]	0x00	R/W	REC_MSG_LEN	0x05E
	GS Control	0x00	R/W	GS_CTRL	0x110
	Air CODEC Side tone	0x40	R/W	GS_ACST	0x111
	Air CODEC input Gain	0x00	R/W	GS_ACIG	0x112
	Air CODEC output Gain	0x00	R/W	GS_ACOG	0x113
	AEC Output Gain	0x00	R/W	GS_AEOG	0x114
	AEC Input Gain	0x00	R/W	GS_AEIG	0x115
	Line CODEC input Gain	0x00	R/W	GS_LCIG	0x116
	Line CODEC output Gain	0x00	R/W	GS_LCOG	0x117
	LEC Output Gain	0x00	R/W	GS_LEOG	0x118
)	LEC Input Gain	0x00	R/W	GS_LEIG	0x119
(0)	AEC out - AEC in Gain	0x00	R/W	GS_AOAI	0x11A
3	LEC out - AEC in Gain	0x00	R/W	GS_LOAI	0x11B
	PLAY - AEC in Gain	0x00	R/W	GS_PLAI	0x11C
	I2SL - AEC in	0x00	R/W	GS_ILAI	0x11D
	I2SR - AEC in	0x00	R/W	GS_IRAI	0x11E
	AEC out - LEC in Gain	0x00	R/W	GS_AOLI	0x11F
	LEC out - LEC in Gain	0x00	R/W	GS_LOLI	0x120
	PLAY - LEC in Gain	0x00	R/W	GS_PLLI	0x121
	I2SL - LEC in	0x00	R/W	GS_ILLI	0x122
	I2SR - LEC in	0x00	R/W	GS_IRLI	0x123
	AEC out - REC in Gain	0x00	R/W	GS_AORI	0x124
	LEC out - REC in Gain	0x00	R/W	GS_LORI	0x125
	PLAY - REC in Gain	0x00	R/W	GS_PLRI	0x126
	I2SL - REC in	0x00	R/W	GS_ILRI	0x127
	I2SR - REC in	0x00	R/W	GS_IRRI	0x128
	AEC out - I2SL in Gain	0x00	R/W	GS_AOIL	0x129
	LEC out - I2SL in Gain	0x00	R/W	GS_LOIL	0x12A
	PLAY - I2SL in Gain	0x00	R/W	GS_PLIL	0x12B
	I2SL - I2SL in	0x00	R/W	GS_ILIL	0x12C
	I2SR - I2SL in	0x00	R/W	GS_IRIL	0x12D
	AEC out - I2SR in Gain	0x00	R/W	GS_AOIR	0x12E
-	LEC out - I2SR in Gain	0x00	R/W	GS_LOIR	0x12F

Addr.	Name	Mode	Value At Reset	Function	
0x130	GS_PLIR	R/W	0x00	PLAY - I2SR in Gain	
0x131	GS_ILIR	R/W	0x00	I2SL - I2SR in	
0x132	GS_IRIR	R/W	0x00	I2SR - I2SR in	
0x13B	MX_AEC	R/W	0x00	AEC Mix Ctrl	
0x13C	MX_LEC	R/W	0x00	LEC Mix Ctrl	
0x13D	MX_REC	R/W	0x00	REC Mix Ctrl	
0x13E	MX_ISL	R/W	0x00	I2S_L Mix Ctrl	
0x13F	MX_ISR	R/W	0x00	I2S_R Mix Ctrl	
0x140	AC_EN	R/W	0x20	Air CODEC Enable	
0x141	AC_CTRL	R/W	0x07	Air CODEC Control	
0x142	AC_ADCG_MSB	R/W	0x04	Air ADC Gain MSB	
0x143	AC_ADCG_LSB	R/W	0x00	Air ADC Gain LSB	2
0x144	AC_DACG_MSB	R/W	0x04	Air DAC Gain MSB	()
0x145	AC_DACG_LSB	R/W	0x00	Air DAC Gain LSB	~
0x146	AC_ADOUT_MSB	R	NA	Air ADC Output MSB	
0x147	AC_ADOUT_LSB	R	NA	Air ADC Output LSB	
0x148	AC_DAOUT_MSB	R	NA	Air DAC Output MSB	
0x149	AC_DAOUT_LSB	R	NA	Air DAC Output MSB	
0x150	LC_EN	R/W	0x20	Line CODEC Enable	
0x151	LC_CTRL	R/W	0x07	Line CODEC Control	
0x152	LC_ADCG_MSB	R/W	0x04	Line ADC Gain MSB	
0x153	LC_ADCG_LSB	R/W	0x00	Line ADC Gain LSB	
0x154	LC_DACG_MSB	R/W	0x04	Line DAC Gain MSB	
0x155	LC_DACG_LSB	R/W	0x00	Line DAC Gain LSB	
0x156	LC_ADOUT_MSB	R	0x00	Line ADC Dout	
0x157	LC_ADOUT_LSB	R	0x00	Line ADC Dout LSB	
0x158	LC_DAOUT_MSB	R	0x00	Line DAC Dout MSB	
0x159	LC_DAOUT_LSB	R	0x00	Line DAC Dout LSB	
	R.S.				
0x160	FSKE_CTRL1	R/W	0x00	FSK Encoder Control	8.12.1
0x161	FSKE_CTRL2	R/W	0x23	FSK Encoder Control	8.12.2

Addr.	Name	Mode	Value At Reset	Function	
0x162	FSKE_FIFO_W	V	NA	FSK Encoder FIFO input	8.12.3
0x163	FSKE_STATUS	R	0x20	FSK Encoder Status	8.12.4
0x164	FSKE_GAIN	R/W	0x39	FSK Encoder Signal Gain	8.12.5
0x165	FSKE_PROG	R/W	0x00	FSK Encoder Programmable mode	8.12.6
0x166	FSKE_BAUD_2	R/W	0x00	FSK Encoder Baud Rate	8.12.7
0x167	FSKE_BAUD_1	R/W	0x00	FSK Encoder Baud Rate	8.12.7
0x168	FSKE_BAUD_0	R/W	0x00	FSK Encoder Baud Rate	8.12.7
0x169	FSKE_MARK_1	R/W	0x00	FSK Encoder Mark Freq	8.12.8
0x16A	FSKE_MARK_0	R/W	0x00	FSK Encoder Mark Freq	8.12.8
0x16B	FSKE_SPACE_1	R/W	0x00	FSK Encoder Space Freq	8.12.9
0x16C	FSKE_SPACE_0	R/W	0x00	FSK Encoder Space Freq	8.12.9
					0
0x180	FSKD_CTRL	R/W	0x00	FSK Decoder Control	8.13.1
0x181	FSKD_MODE	R/W	0x04	FSK Decoder Mode	8.13.2
0x182	FSKD_ADJUST	R/W	0xC0	FSK Decoder Spec Adjustment	8.13.3
0x183	FSKD_STATUS	R	0x02	FSK Decoder Status	8.13.4
0x184	FSKD_THRES_MSB	R/W	0x00	FSK Decoder Hysteresis MSB	8.13.5
0x185	FSKD_THRES_LSB	R/W	0x80	FSK Decoder Hysteresis LSB	8.13.5
0x186	FSKD_JUDGE	R/W	0x04	FSK Decoder judge threshold	8.13.6
0x187	FSKD_SYNC	R/W	0x02	FSK Decoder Sync	8.13.7
0x188	FSKD_CDET	R/W	0x03	FSK Decoder Carrier Detect	8.13.8
0x189	FSKD_FIFO_CTRL	R/W	0x00	FSK Decoder FIFO control	8.13.9
0x18A	FSKD_FIFO_DOUT	V	NA	FSK Decoder FIFO Data	8.13.10
0x18B	FSKD_FIFO_STATUS	R	0x01	FSK Decoder FIFO Status	8.13.11
0x18C	FSKD_ENERGY_HI_TH	R/W	0x0C	FSK Decoder Carrier Energy Threshold	8.13.12
0x18D	FSKD_ENERGY_LO_TH	R/W	0x06	FSK Decoder Carrier Energy Threshold	8.13.13
0x18E	FSKD_ENERGY_TC	R/W	0x40	FSK Decoder Energy time constant	8.13.14
0.400		D 44/	0.05		0.40.40
0x190	FSKD_CDB_FREQ_LOW_CNT	R/W	0x2F	FSK Carrier Detect Frequency Adjust	8.13.16
0x191	FSKD_CDB_FREQ_LOW_CNT_LSB	R/W	0x14	FSK Carrier Detect Frequency Adjust	8.13.16
0x192	FSKD_CDB_FREQ_HIGH_CNT	R/W	0x23	FSK Carrier Detect Frequency Adjust	8.13.17
0x193	FSKD_CDB_FREQ_HIGH_CNT_LSB	R/W	0xF5	FSK Carrier Detect Frequency Adjust	8.13.17
0x194	FSKD_LIMIT_TH	R/W	0xFF	FSK Signal Clamp Threshold	8.13.18

Addr.	Name	Mode	Value At Reset	Function	
0x1A0	PWM Clock	R/W	0x00	PWM Operation Clock Enable	8.21.1
0x1A2	PWM Tone1 Control	R/W	0x00	PWM Tone1 Control	8.21.2
0x1A3	PWM Tone1 Frequency	R/W	0x00	PWM Tone1 Frequency	8.21.3
0x1A4	PWM Tone2 Control	R/W	0x00	PWM Tone2 Control	8.21.4
0x1A5	PWM Tone2 Frequency	R/W	0x00	PWM Tone2 Frequency	8.21.5
0x1B0	RNG_CTRL	R/W	0x00	Ring Det. Control	8.17.1
0x1B1	RNG_STATE	R	0x00	Ring Det. State	8.17.2
0x1B2	RNG_CNTR_MSB	R	0x00	Ring Det. Counter	8.17.3
0x1B3	RNG_CNTR_LSB	R	0x00	Ring Det. Counter	8.17.3
0x1B4	RNG_LATCH	R/W	0x00	Ring Det. Counter latch control	8.17.4
0x1C0	TONE_CTRL	R/W	0x00	Tone Generator Control	8.11.1
0x1C1	TONE_FREQ_A_MSB	R/W	0x00	Tone Frequency A	8.11.2
0x1C2	TONE_FREQ_A_LSB	R/W	0x00	Tone Frequency A	8.11.2
0x1C3	TONE_FREQ_B_MSB	R/W	0x00	Tone Frequency B	8.11.3
0x1C4	TONE_FREQ_B_LSB	R/W	0x00	Tone Frequency B	8.11.3
0x1C5	TONE_LEVEL_A	R/W	0x00	Tone Level A	8.11.4
0x1C6	TONE_LEVEL_B	R/W	0x00	Tone Level B	8.11.5
0x1C7	TONE_ON_TIME	R/W	0x00	Present (on) time of each tone.	8.11.6
0x1C8	TONE_OFF_TIME	R/W	0x00	Absent (off) time of each tone.	8.11.7
0x1C9	TONE_BUF_LEN	R/W	0x00	The number of DTMF digits or tones to generate	8.11.8
2					
0x1D0- 0x1DB	TONE_BUFFER	R/W	0x00	Tone Buffer 0x1D0-0x1DB	8.11.10
0x1E0	DTMF_CTRL	R/W	0x00	DTMF Det. Control	8.10.1
0x1E1	DTMF_FIFO_CTRL	R/W	0x40	DTMF Det. FIFO Control	8.10.2
0x1E2	DTMF_FIFO	R	0x00	DTMF Det. FIFO Information	8.10.3
0x1E3	DTMF_FIFO_STATUS	R/W	0x01	DTMF Det. FIFO Status	8.10.4
0x1E4	DTMF_THRES_MSB	R/W	0x01	DTMF Det. Threshold MSB	8.10.5
0x1E5	DTMF_THRES_LSB	R/W	0x00	DTMF Det. Threshold LSB	8.10.5
0x1E6	DTMF_PDT	R/W	0x00	DTMF Det. Present Detect Time	8.10.6
0x1E7	DTMF_ADT	R/W	0x00	DTMF Det. Absent Detect Time	8.10.7
0x1E8	DTMF_ACCT	R/W	0x00	DTMF Det. Accept Time	8.10.8

ηυνοτοη

Addr.	Name	Mode	Value At Reset	Function	
0x1EA	DTMF_RX_DATA	R	0x00	DTMF Det. Received Data	8.10.10
0x1EB	DTMF_RFREQ_MSB	R	0x00	DTMF Det. Row Frequency MSB	8.10.11
0x1EC	DTMF_RFREQ_LSB	R	0x00	DTMF Det. Row Frequency LSB	8.10.11
0x1ED	DTMF_CFREQ_MSB	R	0x00	DTMF Det. Column Frequency MSB	8.10.12
0x1EE	DTMF_CFREQ_LSB	R	0x00	DTMF Det. Column Frequency LSB	
0x1F0	VD_CTRL	R/W	0x00	Voice Det. Control	
0x1F1	VD_STATUS	R	0x00	Voice Det. Status	
0x1F2	VD_THRES_MSB	R/W	0x01	Voice Det. Threshold MSB	
0x1F3	VD_THRES_LSB	R/W	0x00	Voice Det. Threshold LSB	
0x1F4	VD_ENERGY_MSB	R	0x00	Voice Det. Energy MSB	
0x1F5	VD_ENERGY_LSB	R	0x00	Voice Det. Energy LSB	
0x200	CAS_CTRL	R/W	0x40	CAS Control	2
0x201	CAS_THRES_LOW	R/W	0x00	CAS Low Threshold	()
0x202	CAS_THRES_LOW_LSB	R/W	0x00	CAS Low Threshold	5×2
0x203	CAS_MULT	R/W	0x11	CAS High Threshold Multiplier	
0x204	CAS_PRESENT	R/W	0x40	CAS Present Time	
0x205	CAS_ABSENT	R/W	0x20	CAS Absent Time	
0x206	CAS_STATUS	R	0x00	CAS Status	
0x207	CAS_MODE	R/W	0x10	CAS or Arbitrary Tone Detection Mode	
0x208	ATD_MAX_HFC	R/W	0x01	ATD Max High Frequency Cnt	
0x209	ATD_MAX_HFC_LSB	R/W	0x10	ATD Max High Frequency Cnt	
0x20A	ATD_MIN_HFC	R/W	0x01	ATD Min High Frequency Cnt	
0x20B	ATD_MIN_HFC_LSB	R/W	0x20	ATD Min High Frequency Cnt	
0x20C	ATD_MAX_LFC	R/W	0x01	ATD Max Low Frequency Cnt	
0x20D	ATD_MAX_LFC_LSB	R/W	0x61	ATD Max Low Frequency Cnt	
0x20E	ATD_MIN_LFC	R/W	0x01	ATD Min Low Frequency Cnt	
0x20F	ATD_MIN_LFC_LSB	R/W	0x6F	ATD Min Low Frequency Cnt	
0x210- 0x241	ATD_HF_COEFF	R/W	0x00	ATD High Frequency IIR coefficient 0x210~0x241	
0x242- 0x273	ATD_LF_COEFF	R/W	0x00	ATD Low Frequency IIR coefficient 0x242~0x273	
0x274	FSK_COEFF	R/W	0x00	FSK IIR Coefficient	
0x275	FSK_COEFF_ADDR	R/W	0x00	FSK IIR Coefficient Address	
0x276	CAS_MAX_HFC	R/W	0x01	CAS Max High Frequency Cnt	
0x277	CAS_MAX_HFC_LSB	R/W	0x0E	CAS Max High Frequency Cnt	

ηυνοτοη

Addr.	Name	Mode	Value At Reset	Function	
0x278	CAS_MIN_HFC	R/W	0x01	CAS Min High Frequency Cnt	
0x279	CAS_MIN_HFC_LSB	R/W	0x21	CAS Min High Frequency Cnt	
0x27A	CAS_MAX_LFC	R/W	0x01	CAS Max Low Frequency Cnt	
0x27B	CAS_MAX_LFC_LSB	R/W	0x5D	CAS Max Low Frequency Cnt	
0x27C	CAS_MIN_LFC	R/W	0x01	CAS Min Low Frequency Cnt	
0x27D	CAS_MIN_LFC_LSB	R/W	0x75	CAS Min Low Frequency Cnt	
0x280	CPT_CTRL	R/W	0x07	CPT Control	
0x281	CPT_STATUS	R	0x00	CPT Status	
0x282	CPT_THRES_H_MSB	R/W	0x24	CPT High Threshold MSB	
0x283	CPT_THRES_H_LSB	R/W	0x00	CPT High Threshold LSB	
0x284	CPT_THRES_L_MSB	R/W	0x1A	CPT Low Threshold MSB)
0x285	CPT_THRES_L_LSB	R/W	0x00	CPT Low Threshold LSB	~
0x286	CPT_ENERGY_MSB	R	0x00	CPT Energy MSB	
0x287	CPT_ENERGY_LSB	R	0x00	CPT Energy LSB	
0x290	TIME_CTRL	R/W	0x00	Timer Control	
0x292	TIME_TARG_MSB	R/W	0x00	Timer Target Counter MSB	
0x293	TIME_TARG_LSB	R/W	0x00	Timer Target Counter LSB	
0x294	TIME_CNT_MSB	R	0x00	Timer Current Counter MSB	
0x295	TIME_CNT_LSB	R	0x00	Timer Current Counter LSB	
0x300	AEC_CONFIG	R/W	0x96	AEC Configuration	
0x301	AEC_RESET	R/W	0xE8	AEC Reset	
0x302	AEC_EC_BELTA	R/W	0x03	AEC EC BELTA	
0x303	AEC_AS_COEFF	R/W	0x14	AEC AS Coefficient	
0x305	AEC_DT_LONG_TC	R/W	0x09	AEC Double Talk long term time constant	
0x306	AEC_DT_SHORT_TC	R/W	0xBB	AEC Double Talk short term time constant	
0x307	AEC_DT_HANGOVER_TIME_MSB	R/W	0x00	AEC Double Talk Detector Parameters	
0x308	AEC_DT_HANGOVER_TIME_LSB	R/W	0x20	AEC Double Talk Detector Parameters	
0x309	AEC_DT_DV_THRESH_MSB	R/W	0x19	AEC Double Talk Detector Parameters	
0x30A	AEC_DT_DV_THRESH_LSB	R/W	0x98	AEC Double Talk Detector Parameters	
0x30B	AEC_DT_LONG_THRESH_MSB	R/W	0x00	AEC Double Talk Detector Parameters	
0x30C	AEC_DT_LONG_THRESH_LSB	R/W	0x00	AEC Double Talk Detector Parameters	
0x30D	AEC_DT_SHORT_THRESH_MSB	R/W	0x10	AEC Double Talk Detector Parameters	

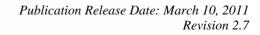
ηυνοτοη

	Name	Mode	Value At Reset	Function	
0x30E	AEC_DT_SHORT_THRESH_LSB	R/W	0x10	AEC Double Talk Detector Parameters	
0x30F	AEC_DIVERGENCE	R/W	0x0F	AEC DIVERGENCE THRESHOLD	
0x310	AEC_VD_LONG_TC	R/W	0x09	AEC Voice Detect Long Time Constant	
0x311	AEC_VD_SHORT_TC	R/W	0xBB	AEC Voice Detect Short Time Constant	
0x312	AEC_VD_HANGOVER_TIME_MSB	R/W	0x00	AEC Voice Detect Parameters	
0x313	AEC_VD_HANGOVER_TIME_LSB	R/W	0x09	AEC Voice Detect Parameters	
0x314	AEC_VD_DEV_THRESHOLD_MSB	R/W	0x19	AEC Voice Detect Parameters	
0x315	AEC_VD_DEV_THRESHOLD_LSB	R/W	0x98	AEC Voice Detect Parameters	
0x316	AEC_VD_LONG_THRESH_MSB	R/W	0x19	AEC Voice Detect Parameters	
0x317	AEC_VD_LONG_THRESH_LSB	R/W	0x98	AEC Voice Detect Parameters	
0x318	AEC_VD_SHORT_THRESH_MSB	R/W	0x0B	AEC Voice Detect Parameters	
0x319	AEC_VD_SHORT_THRESH_LSB	R/W	0x38	AEC Voice Detect Parameters	
0x31A	AEC_CUT_OFF_POWER_MSB	R/W	0x19	AEC Voice Detect Parameters	
0x31B	AEC_CUT_OFF_POWER_LSB	R/W	0x98	AEC Voice Detect Parameters	6
0x31D	AEC_VD_AVE_TC	R/W	0x0B	AEC VD Average Time Constant	
0x31E	AEC_VD_AVE_THRESH_MSB	R/W	0x00	AEC VD Average Threshold	
0x31F	AEC_VD_AVE_THRESH_LSB	R/W	0x00	AEC VD Average Threshold	
0x320	AEC_AS1_BUILD_UP_TIME	R/W	0x77	AEC AS1 Built Up Time	
0x321	AEC_AS1_MAX_ATTEN_MSB	R/W	0x1C	AEC AS1 Max Attenuation value(MSB)	
0x322	AEC_AS1_MAX_ATTEN_LSB	R/W	0xA8	AEC AS1 Max Attenuation value(LSB)	
0x323	AEC_AS2_BUILD_UP_TIME	R/W	0x77	AEC AS2 Built Up Time	
0x324	AEC_AS2_MAX_ATTEN_MSB	R/W	0x1C	AEC AS2 Max Attenuation value(MSB)	
0x325	AEC_AS2_MAX_ATTEN_LSB	R/W	0xAB	AEC AS2 Max Attenuation value(LSB)	
0x328	AEC_NS_POWER_ATTACK_TC	R/W	0xBB	AEC Noise Suppressor power attack time constant	
0x329	AEC_NS_ATTEN_TC	R/W	0xBB	AEC NS Attenuation Time Constant	
0x32A	AEC_NS_ACTIVE_THRESHOLD_MSB	R/W	0x03	AEC NS Active threshold (MSB)	
0x32B	AEC_NS_ACTIVE_THRESHOLD_LSB	R/W	0xE8	AEC NS Active threshold (LSB)	
0x32C	AEC_NO_VOICE_THRESH_MSB	R/W	0x14	AEC NO Voice Threshold MSB	
0x32D	AEC_NO_VOICE_THRESH_LSB	R/W	0x08	AEC NO Voice Threshold LSB	
0x330	AGC_THRES_MSB	R/W	0x20	AGC THRESHOLD MSB	
0x331	AGC_THRES_LSB	R/W	0x00	AGC THRESHOLD LSB	

- 26 -

ηυνοτοη

Addr.	Name	Mode	Value At Reset	Function	
0x332	AGC_NOISE_THRES_MSB	R/W	0x03	AGC NOISE THRESHOLD MSB	
0x333	AGC_NOISE_THRES_LSB	R/W	0x20	AGC NOISE THRESHOLD LSB	
0x334	AGC_MAX_SG	R/W	0x02	AGC MAX SG	
0x335	AGC_LATK_TC	R/W	0xbb	AGC LATK TC Constant	
0x336	AGC_SATK_TC	R/W	0x09	AGC SATK Time Constant	
0x338	AEC_VD_SC_CTRL	R/W	0x00	AEC VD SC Control	
0x339	AEC_VD_SC_NORMAL_INDEX	R/W	0x00	AEC VD SC NORMAL INDEX	
0x33A	AEC_VD_SC_LOW_INDEX	R/W	0x00	AEC VD SC LOW INDEX	
0x33B	AEC_VD_SC_THRESH_MSB	R/W	0x10	AEC VD SC Threshold MSB	
0x33C	AEC_VD_SC_THRESH_LSB	R/W	0x00	AEC VD SC Threshold LSB	
0x33D	AEC_VD_SC_POWER_ATTACK_TC	R/W	0x07	AEC VD SC Power Attack Time Constant	
0x33E	AEC_VD_SC_GAIN_TC	R/W	0x07	AEC VD SC GAIN Time Constant	1
0x340	AEC_DT_SHORT_TERM_POWER_MSB	R	NA	AEC DT Short Term Power MSB)
0x341	AEC_DT_SHORT_TERM_POWER_LSB	R	NA	AEC DT Short Term Power LSB	×.
0x342	AEC_DT_LONG_TERM_POWER_MSB	R	NA	AEC DT Long Term Power MSB	
0x343	AEC_DT_LONG_TERM_POWER_LSB	R	NA	AEC DT Long Term Power LSB	
0x344	AEC_DT_POWER_DEVIATION_MSB	R	NA	AEC DT POWER Deviation MSB	
0x345	AEC_DT_POWER_DEVIATION_LSB	R	NA	AEC DT POWER Deviation LSB	
0x346	AEC_DT_ACTIVE	R	NA	AEC DT Active	
0x348	AEC_VD_SHORT_TERM_POWER_MSB	R	NA	AEC VD Short Term Power MSB	
0x349	AEC_VD_SHORT_TERM_POWER_LSB	R	NA	AEC VD Short Term Power LSB	
0x34A	AEC_VD_LONG_TERM_POWER_MSB	R	NA	AEC VD Long Term Power MSB	
0x34B	AEC_VD_LONG_TERM_POWER_LSB	R	NA	AEC VD Long Term Power LSB	
0x34C	AEC_VD_POWER_DEVIATION_MSB	R	NA	AEC VD Power Deviation MSB	
0x34D	AEC_VD_POWER_DEVIATION_LSB	R	NA	AEC VD Power Deviation LSB	
0x34E	AEC_VD_ACTIVE	R	NA	AEC VD Active	
0x350	AEC_LRIN[15:8]	R	NA	AEC LRIN MSB	
0x351	AEC_LRIN[7:0]	R	NA	AEC LRIN LSB	
0x352	AEC_EOUT[15:8]	R	NA	AEC EOUT MSB	
0x353	AEC_EOUT[7:0]	R	NA	AEC EOUT LSB	
0x354	AEC_ASOUT15:8]	R	NA	AEC ASOUT MSB	
0x355	AEC_ASOUT[7:0]	R	NA	AEC ASOUT LSB	
0x356	AEC_ASIN[15:8]	R	NA	AEC ASIN MSB	
0x357	AEC_ASIN[7:0]	R	NA	AEC ASIN LSB	


	Function	Value At Reset	Mode	Name	Addr.
	AEC LSOUT MSB	NA	R	AEC_LSOUT[15:8]	0x358
	AEC LSOUT LSB	NA	R	AEC_LSOUT[7:0]	0x359
	AEC Macro Address MSB	0x00	R/W	AEC_MACRO_ADDR[15:8]	0x35C
	AEC Macro Address LSB	0x00	R/W	AEC_MACRO_ADDR[7:0]	0x35D
	AEC Macro Data MSB	NA	R/W	AEC_MACRO_DATA[15:8]	0x35E
	AEC Macro Data LSB	NA	R/W	AEC_MACRO_DATA[7:0]	0x35F
_	AGC Control	0x00	R/W	AGC_CTRL	0x360
	AGC Initial Gain	0x88	R/W	 AGC_INIT_GAIN	0x361
	AGC Gain Hold	0x00	R/W	AGC_GAIN_HOLD	0x362
	AGC INC and DEC	0x00	R/W	AGC_INC_DEC	0x363
2)	AGC ATK DCY	0x00	R/W	AGC_ATK_DCY	0x364
3	AGC Gain Read	NA	R	AGC_GAIN_READ	0x365
50	AGC State	NA	R	AGC_STATE	0x366
	AGC Power Time Constant	0x99	R/W	AGC_PWR_TC	0x367
	AGC PK Time Constant	0x00	R/W	AGC_PK_TC	0x368
	AGC PK MSB	0x00	R	AGC_PK_MSB	
	AGC PK LSB	0x00	R	AGC_PK_LSB	0x36A
	AGC Target Clip MSB	0x73	R/W	AGC_TARG_CLIP	0x370
	AGC Target Clip LSB	0x33	R/W	AGC_TARG_CLIP_LSB	0x371
	AGC Target High MSB	0x68	R/W	AGC_TARG_HI	0x372
	AGC Target High LSB	0x00	R/W	AGC_TARG_HI_LSB	0x373
	AGC Target Low MSB	0x66	R/W	AGC_TARG_LO	0x374
	AGC Target Low LSB	0x66	R/W	AGC_TARG_LO_LSB	0x375
	AGC Target RB LSB	0x00	R	AGC_TARG_RB	0x376
	AGC Target RB LSB	0x00	R	AGC_TARG_RB_LSB	0x377
	AGC Noise Bias	0x00	R/W	AGC_NOISE_BIAS	0x378
	AGC Noise High MSB	0x00	R/W	AGC_NOISE_HI	0x379
	AGC Noise High LSB	0x00	R/W	AGC_NOISE_HI_LSB	0x37A
	AGC Noise Low MSB	0x00	R/W	AGC_NOISE_LO	0x37B
	AGC Noise Low LSB	0x00	R/W	AGC_NOISE_LO_LSB	0x37C
	AGC Noise [23:16]	0x00	R	AGC_NOISE_RB	0x37D
	AGC Noise [15:8]	0x00	R	AGC_NOISE_RB_2SB	0x37E
	AGC Noise [7:0]	0x00	R	AGC_NOISE_RB_LSB	0x37F

ηυνοτοη

Addr.	Name	Mode	Value At Reset	Function	
0x380	LEC_CONFIG	R/W	0x96	LEC Configuration	
0x381	LEC_RESET	R/W	0xA8	LEC Reset	
0x382	LEC_EC_BELTA	R/W	0x03	LEC EC BELTA	
0x383	LEC_AS_COEFF	R/W	0x04	LEC AS Coefficient	
0x385	LEC_DT_LONG_TC	R/W	0x09	LEC Double Talk long term time constant	
0x386	LEC_DT_SHORT_TC	R/W	0xBB	LEC Double Talk short term time constant	
0x387	LEC_DT_HANGOVER_TIME_MSB	R/W	0x00	LEC Double Talk Detector Parameters	
0x388	LEC_DT_HANGOVER_TIME_LSB	R/W	0x20	LEC Double Talk Detector Parameters	
0x389	LEC_DT_DV_THRESH_MSB	R/W	0x19	LEC Double Talk Detector Parameters	
0x38A	LEC_DT_DV_THRESH_LSB	R/W	0x98	LEC Double Talk Detector Parameters	
0x38B	LEC_DT_LONG_THRESH_MSB	R/W	0x00	LEC Double Talk Detector Parameters	
0x38C	LEC_DT_LONG_THRESH_LSB	R/W	0x00	LEC Double Talk Detector Parameters	
0x38D	LEC_DT_SHORT_THRESH_MSB	R/W	0x10	LEC Double Talk Detector Parameters))
0x38E	LEC_DT_SHORT_THRESH_LSB	R/W	0x10	LEC Double Talk Detector Parameters	
0x38F	LEC_DIVERGENCE	R/W	0x0F	LEC DIVERGENCE THRESHOLD	
0x390	LEC_VD_LONG_TC	R/W	0x09	LEC Voice Detect Long Time Constant	
0x391	LEC_VD_SHORT_TC	R/W	0xBB	LEC Voice Detect Short Time Constant	
0x392	LEC_VD_HANGOVER_TIME_MSB	R/W	0x00	LEC Voice Detect Parameters	
0x393	LEC_VD_HANGOVER_TIME_LSB	R/W	0x09	LEC Voice Detect Parameters	
0x394	LEC_VD_DEV_THRESHOLD_MSB	R/W	0x19	LEC Voice Detect Parameters	
0x395	LEC_VD_DEV_THRESHOLD_LSB	R/W	0x98	LEC Voice Detect Parameters	
0x396	LEC_VD_LONG_THRESH_MSB	R/W	0x19	LEC Voice Detect Parameters	
0x397	LEC_VD_LONG_THRESH_LSB	R/W	0x98	LEC Voice Detect Parameters	
0x398	LEC_VD_SHORT_THRESH_MSB	R/W	0x10	LEC Voice Detect Parameters	
0x399	LEC_VD_SHORT_THRESH_LSB	R/W	0x38	LEC Voice Detect Parameters	
0x39A	LEC_CUT_OFF_POWER_MSB	R/W	0x19	LEC Voice Detect Parameters	
0x39B	LEC_CUT_OFF_POWER_LSB	R/W	0x98	LEC Voice Detect Parameters	
0x39D	LEC_VD_AVE_TC	R/W	0x0B	LEC VD Average Time Constant	
0x39E	LEC_VD_AVE_THRESH_MSB	R/W	0x00	LEC VD Average Threshold MSB	
0x39F	LEC_VD_AVE_THRESH_LSB	R/W	0x00	LEC VD Average Threshold LSB	
0x3A0	LEC_AS1_BUILD_UP_TIME	R/W	0x77	LEC AS1 Built Up Time	
0x3A1	LEC_AS1_MAX_ATTEN_MSB	R/W	0x1C	LEC AS1 Max Attenuation value(MSB)	
0x3A2	LEC_AS1_MAX_ATTEN_LSB	R/W	0xA8	LEC AS1 Max Attenuation value(LSB)	
0x3A3	LEC_AS2_BUILD_UP_TIME	R/W	0x77	LEC AS2 Built Up Time	

Addr.	Name	Mode	Value At Reset	Function	
0x3A4 LEC_AS2_MAX_ATTEN_MSB		R/W	0x1C	LEC AS2 Max Attenuation value(MSB)	
0x3A5	LEC_AS2_MAX_ATTEN_LSB	R/W	0xA8	LEC AS2 Max Attenuation value(LSB)	
0x3A8	LEC_NS_POWER_ATTACK_TC	R/W	0xBB	LEC Noise Suppressor power attack time constant	
0x3A9	LEC_NS_ATTEN_TC	R/W	0xBB	LEC NS Attenuation Time Constant	
0x3AA	LEC_NS_ACTIVE_THRESHOLD_MSB	R/W	0x03	LEC NS Active threshold (MSB)	
0x3AB	LEC_NS_ACTIVE_THRESHOLD_LSB	R/W	0xE8	LEC NS Active threshold (LSB)	
				St Op	
0x3B0	LEC_DT_SC_CTRL	R/W	0x00	LEC DT SC Control	
0x3B1	LEC_DT_SC_NORMAL_INDEX	R/W	0x00	LEC DT SC NORMAL INDEX	
0x3B2	LEC_DT_SC_LOW_INDEX	R/W	0x00	LEC DT SC Low INDEX	
0x3B3	LEC_DT_SC_THRESH_MSB	R/W	0x10	LEC DT SC Threshold MSB	2
0x3B4	LEC_DT_SC_THRESH_LSB	R/W	0x00	LEC DT SC Threshold LSB	0
0x3B5	LEC_DT_SC_POWER_ATTACK_TC	R/W	0x07	LEC DT SC Power Attack Time Constant	
0x3B6	LEC_DT_SC_GAIN_TC	R/W	0x07	LEC DT SC GAIN Time Constant	
0x3B8	LEC_VD_SC_CTRL	R/W	0x00	LEC VD SC Control	
0x3B9	LEC_VD_SC_NORMAL_INDEX	R/W	0x00	LEC VD SC NORMAL INDEX	
0x3BA	LEC_VD_SC_LOW_INDEX	R/W	0x00	LEC VD SC LOW INDEX	
0x3BB	LEC_VD_SC_THRESH_MSB	R/W	0x10	LEC VD SC Threshold MSB	
0x3BC	LEC_VD_SC_THRESH_LSB	R/W	0x00	LEC VD SC Threshold LSB	
0x3BD	LEC_VD_SC_POWER_ATTACK_TC	R/W	0x07	LEC VD SC Power Attack Time Constant	
0x3BE	LEC_VD_SC_GAIN_TC	R/W	0x07	LEC VD SC GAIN Time Constant	
0x3C0	LEC_DT_SHORT_TERM_POWER_MSB	R	NA	LEC DT Short Term Power MSB	
0x3C1	LEC_DT_SHORT_TERM_POWER_LSB	R	NA	LEC DT Short Term Power LSB	
0x3C2	LEC_DT_LONG_TERM_POWER_MSB	R	NA	LEC DT Long Term Power MSB	
0x3C3	LEC_DT_LONG_TERM_POWER_LSB	R	NA	LEC DT Long Term Power LSB	
0x3C4	LEC_DT_POWER_DEVIATION_MSB	R	NA	LEC DT POWER Deviation MSB	
0x3C5	LEC_DT_POWER_DEVIATION_LSB	R	NA	LEC DT POWER Deviation LSB	
0x3C6	LEC_DT_ACTIVE	R	NA	LEC DT Active	
0x3C8	LEC_VD_SHORT_TERM_POWER_MSB	R	NA	LEC VD Short Term Power MSB	
0x3C9	LEC_VD_SHORT_TERM_POWER_LSB	R	NA	LEC VD Short Term Power LSB	
0x3CA	LEC_VD_LONG_TERM_POWER_MSB	R	NA	LEC VD Long Term Power MSB	
0x3CB	LEC_VD_LONG_TERM_POWER_LSB	R	NA	LEC VD Long Term Power LSB	

Addr.	Name	Mode	Value At Reset	Function
0x3CC	LEC_VD_POWER_DEVIATION_MSB	R	NA	LEC VD Power Deviation MSB
0x3CD	LEC_VD_POWER_DEVIATION_LSB	R	NA	LEC VD Power Deviation LSB
0x3CE	LEC_VD_ACTIVE	R	NA	LEC VD Active
0x3D0	LEC_LRIN[15:8]	R	NA	LEC LRIN MSB
0x3D1	LEC_LRIN[7:0]	R	NA	LEC LRIN LSB
0x3D2	LEC_EOUT[15:8]	R	NA	LEC EOUT MSB
0x3D3	LEC_EOUT[7:0]	R	NA	LEC EOUT LSB
0x3D4	LEC_ASOUT15:8]	R	NA	LEC ASOUT MSB
0x3D5	LEC_ASOUT[7:0]	R	NA	LEC ASOUT LSB
0x3D6	LEC_ASIN[15:8]	R	NA	LEC ASIN MSB
0x3D7	LEC_ASIN[7:0]	R	NA	LEC ASIN LSB
0x3D8	LEC_LSOUT[15:8]	R	NA	LEC LSOUT MSB
0x3D9	LEC_LSOUT[7:0]	R	NA	LEC LSOUT LSB
				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0x3DC	LEC_MACRO_ADDR[15:8]	R/W	0x00	LEC Macro Address MSB
0x3DD	LEC_MACRO_ADDR[7:0]	R/W	0x00	LEC Macro Address LSB
0x3DE	LEC_MACRO_DATA[15:8]	R/W	NA	LEC Macro Data MSB
0x3DF	LEC_MACRO_DATA[7:0]	R/W	NA	LEC Macro Data LSB





#### 7. DEVICE STATUS

#### 7.1 Device Status Register

Whenever the ISD61S00 receives an SPI command it also returns its current status via MISO. The details of the status byte are shown below. For commands that are not reading digital data from the device this status byte is sent via MISO for every byte of data sent to the ISD61S00.

	Status Byte						
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PD	DBUF_RDY	INT	RM_FUL	-	VM_BSY	CBUF_FUL	CMD_BSY

The individual bits of the status register refer to the following conditions:

- **PD** If this bit is high then the device is powered down. The DBUF_RDY bit will be low, but all device output pins will be high impedance. When PD is high only the READ_STATUS, READ_INT and PWR_UP commands are accepted. If any other command is sent, it is ignored and no interrupt for an error is generated.
- **DBUF_RDY** in PD this bit is low indicating the device can only accept a PWR_UP (power up) command. When PD is low this bit reflects the state of the RDY/BSY pin.
- **INT** an interrupt has been generated. The interrupt is cleared by the READ_INT command. Interrupt type can be determined by the bits of the Interrupt Status Byte.
- **RM_FUL** Recording Memory is full. This bit will be set if a record command fills the memory. This bit is reset by an ERASE_MSG@, ERASE_MEM, or CHIP_ERASE operation.
- VM_BSY indicates the device is processing a voice macro. The device will not respond to a new audio command until this bit returns low.
- **CBUF_FUL** indicates that the command buffer is full. No more commands can be queued for execution until this bit returns low.
- **CMD_BSY** indicates the device is processing a command. Device will not respond to a new command until this bit returns low. If CMD_BSY=1 and CBUF_FUL=0 and VM_BSY=0, a new command will go into the command buffer and execute when the current command finishes. If CMD_BSY=1 and CBUF_FUL=1 or VM_BSY=1 any new audio command will be ignored and generate a command error. For device erase commands such as ERASE_MSG@, ERASE_MEM and CHIP_ERASE, the user can to poll this bit determine if the erasure is complete.

Whenever the ISD61S00 generates an interrupt the Interrupt Status registers hold flags that indicate what type of interrupt was generated. These flags will remain set until a READ_INT command clears them and the hardware interrupt pin (INTB). The interrupt enable registers IE0, IE1 (see section 8.5.3 8.5.4) mask whether internal functions generate interrupt events or not. Some interrupts require further servicing to remove the condition generating the interrupt, for instance a FIFO full or empty interrupt. If the condition is not serviced before a READ_INT, the device will immediately generate a new interrupt. The procedure to respond to an interrupt is the following:

- 1. READ_STATUS to determine what interrupt flags are set.
- 2. Service the interrupt appropriately,

#### nuvoTon

3. READ_INT and check whether any new interrupts have occurred during the service routines. If new interrupt detected go to step 2. The READ_INT will clear the interrupt status.

	Interrupt Status Byte 1						
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
GPIO_INT	MPT_ERR	WR_FIN	CMD_ERR	OVF_ERR	CMD_FIN	ADDR_ERR	FULL_ERR

The individual bits of the status register refer to the following conditions:

GPIO_INT	GPIO interrupt has occurred. A GPIO pin configured to produce an interrupt has toggled state.
MPT_ERR	Indicates a memory protection error. Digital access attempted for protected memory.
WR_FIN	Indicates a digital write command has finished writing to the flash memory.
CMD_ERR	An invalid command was sent to the device. Command was ignored because the command buffer was full, a voice macro was active or the device was not ready to respond to an erase command.
OVF_ERR	This error is generated if host illegally tries to read or write data while RDY/BSYB is low. It is also generated if a digital read or write attempts to read or write past the end of memory.
CMD_FIN	This bit indicates an interrupt was generated because a command finished executing. A CMD_FIN interrupt will be generated each time an audio play, record or voice macro finishes.
ADDR_ERR	Indicates an address error. This bit will be set to one if a PLAY_MSG@ command is sent at a non-valid header, a REC_MSG@ is sent at a non-blank memory location or an ERASE_MSG command is sent to a sector that is not the beginning of message.
FULL_ERR	Record Block is full. This bit will be set and an interrupt generated if a record command fills the memory.

			Interrup	t Status Byte 2			
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RNG_INT	CAS_INT	FSK_D	FSK_E	TONE_INT	DTMF_INT	CPT_INT	VD_INT

 Table 7-3
 Interrupt Status Register Description

VD_INT Voice Detection interrupt

CPT_INT Call Progress Tone detector interrupt

DTMF_INT The DTMF detector has generated an interrupt. This corresponds to a FIFO condition configured by the user.

nuvoTon

TONE_INT	The tone or DTMF generator has generated an interrupt.
FSK_E	The FSK Encoder has generated an interrupt for either half empty or empty condition of FIFO.
FSK_D	The FSK Decoder has generated an interrupt for a FIFO condition or parity error.
CAS_INT	The CAS/Arbitrary Tone detector has detected a valid tone.
RNG INT	The Ring Detect block has generated an interrupt.

Table 7-4	Timer interrupt and operation status
-----------	--------------------------------------

Timer interrupt and additional status											
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
TIMER_INT			DPLL_LOCK		PLL_LOCK	DECODE	COMP				

TIMER_INTTimer block has generated an interrupt.DPLL_LOCKIndicates lock of digital PLL for PCM slave mode synchronization.PLL_LOCKStatus bit indicating that PLL is locked and valid clock is available.DECODEStatus bit indicating that compressor is 1: decoding, 0: encodingCOMPStatus bit indicating that compressor is active.

#### 8. FUNCTIONAL DESCRIPTION

ISD61S00 is a device targeted at applications requiring voice storage while interfacing to a PSTN telephony network. It provides high quality audio storage for record and playback and offers features of pre-recorded voice prompting and voice macros.

The acoustic side interface provides analog buffers to a microphone and audio output and incorporates on-chip acoustic echo cancellation to allow speakerphone functionality. Network side provides interface to the PSTN and includes a line echo cancellation network.

PCM data enters a mixer matrix whereby signals can be digitally gain controlled, mixed and passed between inputs and outputs. Additionally paths can be selected to monitor input for DTMF or FSK data.

All control and configuration is mapped into SPI accessible configuration registers. In addition these registers can be set from within Voice Macros allowing device to self configure from flash memory.

#### 8.1 SPI Interface

Control of the ISD61S00 is via a four-wire SPI interface. This consists of an active low slave-select (SSB) signal to select the device, a serial clock (SCLK) a data input (Master Out Slave In - MOSI), and a data output (Master In Slave Out - MISO). In addition to the standard four wire interface a RDY/BSYB (ready, busy-bar) signal is supplied for data flow control needed in some transactions.

A SPI transaction begins on the falling edge of SSB and takes the form of the example below:



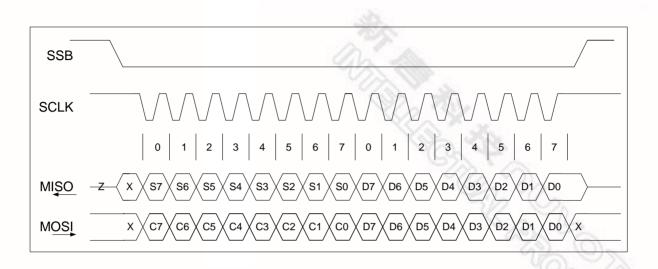



Figure 8-1 SPI Data Transaction

A command transaction begins with sending a command byte (C7-C0). The most significant bit (MSB – C7) is sent in first. During the shift in of the command byte, device status (S7-S0) is sent out MISO. After the command byte, depending upon the command sent, one or more bytes of data may follow. See Section 7.26 for details of SPI commands and data expected.

For a data writing commands RDY/BSYB is used to handshake data into the device. RDY/BSYB will change state after the rising edge of SCLK of the LSB of a byte transmission. When this occurs SCLK should be held high and data transmission paused until RDY/BSYB returns high indicating that device is ready to receive further data. The timing of this is shown in Figure 8-2 R/B Timing for SPI Writing Transactions

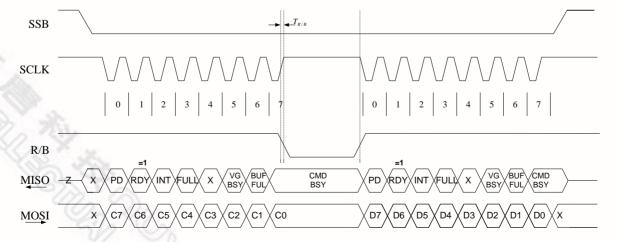



Figure 8-2 R/B Timing for SPI Writing Transactions

If host violates the request from RDY/BSYB, then the RDY bit of the status register for the next byte will reflect the state of RDY/BSYB. If host detects that the RDY bit of status is zero then the current byte of

nuvoTon

data was not accepted by the ISD61S00. No further data will be accepted and the host must terminate the SPI transaction. For commands that read data from the part (for instance DIG_READ and SPI_READ) it is not possible to monitor the RDY bit of status so the RDY/BSYB signal must be monitored to know status. If RDY/BSYB is violated an interrupt is also generated to inform user that data was not accepted. The INT pin will go low shortly after the first violating edge of SCLK. In a data read operation, monitoring this interrupt is the only way of knowing that a RDY/BSYB violation has occurred apart from monitoring RDY/BSYB itself. Using this technique it is possible for a host that is IO limited to operate without monitoring RDY/BSYB.

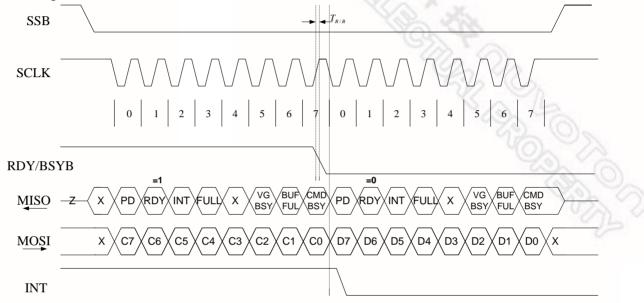



Figure 8-3 SPI Transaction Ignoring RDY/BSYB

#### 8.2 Record and Playback Control

The ISD61S00 contains a compression and decompression engine that record and playback audio from internal flash memory. During recording, audio is re-sampled from the sample rate of the active audio path to the sample rate desired for storage. During playback audio data from the de-compression engine is re-sampled to that of the audio path.

#### 8.2.1 COMP_CFG – Compression Configuration

The COMP_CFG register controls the sample rate and compression algorithm during message record operations. It can also override sample rate setting for playback by setting bit 0 of CFG1 high. SR[2:0]=COMP_CFG[7:5] controls the sample rate and CMP[4:0]=COMP_CFG[4:0] controls the compression. An explanation of these follows below.

Address	Access I	Mode	Value At Rese	et						
0x000 R/W		/	0x64							
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
	SR[2:0]			CMP[4:0]						

- 36 -

### nuvoTon

CMP[4:0] Controls the compression algorithm used for recording. Details in Table 8-1.

SR[2:0] Controls the sample rate used for recording. Can also override the playback sample rate. Details in Table 8-2

		N/ A	N 6.374
Compression	Bit rate	CMP	[4:0]
Туре	(bits/sample)	(Dec)	(Hex)
ADPCM	2	2	0x02
ADPCM	3	3	0x03
ADPCM	4	4	0x04
ADPCM	5	5	0x05
µ-Law	6	16	0x10
μ-Law	7	17	0x11
µ-Law	8	18	0x12
Dµ-Law	6	20	0x14
Dµ-Law	7	21	0x15
Dµ-Law	8	22	0x16
PCM	8	24	0x18
PCM	10	25	0x19
РСМ	12	27	0x1B

Table 8-1 COMF	CEG Register	Compression	Type
		00111010331011	TYPC.

Sample Rate (kHz)	Code	COMP	_CFG[7:0]
	SR[2:0]	(Dec)	(Hex)
4	0	0	0x00
5.333	1	32	0x20
6.4	2	64	0x40
8	3	96	0x60
10.6	4	128	0x80
12.8	5	160	0xA0
16	6	192	0xC0

The current operational mode of the ISD61S00 can also be queried by setting CFG1[4] and reading COMP_CFG. Under this condition, rather than reading back the configuration register, the result will be current audio path sample rate and compression scheme.

### nuvoton

#### 8.2.2 COMP_CTRL – Compression Control

Address		Access Mode		Value At Reset						
0x001		R/W		R/W 0x00		200	20			
Bit 7	Bit	6	Bit \$	5	Bit 4	Bit 3	E	Bit 2	Bit 1	Bit 0
FIFO Over- run	FIFO U rur		LRM	Р	CFG0_READ	PAUSE	N	RMP	SRSIL	SRCFG

Configuration register CFG1 controls how compressed audio is treated by the compression block:

- SRCFG Forces the sample rate to be set by the COMP_CFG register. By setting this bit to one sample rate contained in the recorded audio header is overridden.
- SRSIL Under normal circumstances, whenever a change in sample rate is detected between two consecutive messages a period of silence is automatically inserted. This is to prevent any transients in the signal path occurring as filter coefficients are changed. To turn off this silence insertion set this bit to one.
- NRMP Under normal conditions, if an audio playback finishes at a non-zero level the input to the signal path will be ramped to zero. This prevents a DC offset appearing on the output. To turn this feature off, for instance if a small audio sample is being looped, set this bit to one. Please note that **NRMP** and **LRMP** should not be set at the same time.
- PAUSE When this bit is set, Record or Playback operation will be paused. Clear this bit to resume the operation
- CFG0_READ When this bit is set, a read of COMP_CFG will result in the current operation mode of compression and sample rate rather than the setting of the COMP_CFG register. A write to COMP_CFG will still result in setting the register, but the contents of the register cannot be read back until CFG0_READ is set to zero. Set this bit to 1, the input to the signal path will not be ramped during the loop-play, but will be ramped to zero when the playback finishes or being stopped by a STOP or STOP_LP command. Please note that **NRMP** and **LRMP** should not be set at the same time.
- FIFO Underrun This is a read only register, that when high indicates that the audio FIFO has under-run, that is audio data was not present when required by the signal path. This is a normal condition at the end of a play command when compression is active. It can be used during a SPI_DAC operation to check whether data sent to ISD61S00 was corrupted. This signal is latched and is reset by writing a 1 followed by a 0 to CFG1[7], the FIFO Over-run bit.
- FIFO Overrun When read, a high indicates that the audio FIFO has over-run, that is audio data from the signal path could not be processed fast enough to keep audio integrity and data was lost. This is a normal condition at the end of a record command when compression has finished. It can be used during a SPI_ADC operation to check whether data received from the ISD161S00 was corrupted. This signal is latched and is reset by writing a 1 followed by a 0 to the register.

### nuvoton

#### 8.2.3 COMP_SRC – Compression Source

Address		Access	Mode	Value At Reset				
0x002		R/W		0x00				
Bit 7	E	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Reserved	DE	CODE	SPI_IN	Reserved	Reserved	Reserved	ENCODE	SPI_OUT

- SPI_OUT Output signal data to SPI. SPI_OUT and ENCODE cannot be both on at the same time. If DECODE is selected, the signal path is bypassed and ISD161S00 is ready for SPI playback operation. If DECODE is not set then the signal source is the audio path and a SPI ADC operation is selected. Use the SPI_RCV_AUD command to read the audio data out the SPI interface.
- SPI_IN Input data from SPI. SPI_IN and DECODE cannot be both on at the same time. If ENCODE is set, then an SPI record operation is selected. If no audio data is sent to the signal path for a SPI DAC operation. Use the SPI_SND_AUD command to send audio data to the ISD61S00 from the SPI interface.
- ENCODE Used in conjunction with a record operation. When selected, signal data is routed to the Audio compressor for compression. If SPI_IN is also selected, the signal path is bypassed and becomes ready for an SPI record operation using the SPI_SND_AUDIO command.
- DECODE Used in conjunction with a play operation. When selected the signal path picks up data from the compressor and plays it to the corresponding outputs selected.

Address		Access Mode		Value At Reset					
0x003	R/W			0x03				_	
Bit 7	Bit	t 6	Bit 5		Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DPLL_RANGE				DPLL_EN	CODEC_FS	5	BCLK_RATE		

#### 8.2.4 CLK_CTRL – Clock Control

BCLK_RATE Determines the bit clock rate of the I2S interface in master mode. 0: 8 192MHz

		1: 4.096MHz
		2: 2.048MHz
		3: 1.024MHz
		4: 512kHz
		5: 256kHz
		6: 128kHz
		7: 64kHz
CO	DEC_FS	Determines the master sample rate of the audio CODEC. 0: 8kHz 1: 16kHz
DP	LL_EN	1: Enable Digital PLL. Used when PCM interface in slave mode to synchronize master clock rate to an external frame sync sample rate on WS pin. To use this mode PLL must also be active.
DP	LL_RANGE	Lock-in range of digital PLL. Use smallest value that achieves locking. Range is approximately 0: 10ps, 1: 20ps, 3: 40ps, 7:120ps.

### nuvoTon

#### 8.2.5 CFG17 – Update Mode

Address		Access	Mode	Value At Res	et			
0x017		R/	N	0x01				_
Bit 7	E	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PLL_LOCK	RE	3_SPI	Reserved	Reserved	DEC	COMPRESS	UPDATE	IMM

IMM	Immediate update mode. Registers 0x000-0x016 are double buffered. If IMM bit is set register values are active as soon as written.
UPDATE	If IMM bit is not set then registers 0x000-0x016 do not take effect until a 1 is written to this register
COMPRESS	Read only bit indicating that compression engine is active
DEC RB_SPI	Read only bit indicating that compression engine is 1: decoding 0: encoding This bit is set if users wish to monitor the RDY/BSYB handshake through SPI status rather than the hardware pin. When set it ensures that when conducting DIG_WRITE, SPI_SND_AUD and SPI_SND_DEC commands that the RDY bit of the status register is latched on SPI byte boundaries for correct read back.
PLL_LOCK	Read only status indicating that PLL is locked.

#### 8.3 Clock Generation and PLL

The PLL may be used to multiply an external input clock reference frequency by a high resolution fractional number. To enable the use of the widest possible range of external reference clocks, the PLL block includes an optional divide-by-two prescaler for the input clock, a fixed divide-by-four scaler on the PLL output, and an additional programmable integer divider that is the Master Clock Prescaler.



#### **ISD61S00 DESIGN GUIDE** nuvoton ADC DAC PLL Prescaler REG44[4] MCLK DIV REG40[4:2] XTALIN **f**_{PLL} CI KM f/N PI I **FIA** IMCLK = 0 24.576MHz DPI I PLL BLOCK f₂ = 98.304MHz PLL BYPASS REG44[6] DPLL CODEC FS BCLK RATE f/N f/M REG3[7:4] REG3[3] REG3[2:0] GPIO[13] f_{OPCLk} f/N GPIO13 AF bit Master/Slave OPCLK_DIV Mode REG40[1:0] REG50[4] FS Digital Audio Interface BCLK

# Figure 8-4 Clock Generation Block Diagram

The high resolution fraction for the PLL is the ratio of the desired PLL oscillator frequency and the reference frequency at the PLL input. This can be represented as  $R = f_2/f_1$ , with R in the form of a decimal number: xy.abcdefgh. To program the ISD61S00, this value is separated into an integer portion ("xy"), and a fractional portion. The fractional portion of the multiplier ("abcdefgh") is a value that when represented as a 24-bit binary number, most closely matches the exact desired multiplier factor.

To keep the PLL within its proper operating range, the integer portion of the decimal number ("xy"), must be any of the following decimal values: 6, 7, 8, 9, 10, 11, or 12. The input and output dividers outside of the PLL are used to scale frequencies as needed to keep the "xy" value within the required range.

Thus, for any given design, choose

 $R = f_2/f_1 = xy.abcdefgh$  decimal value

N = xy truncated to only the integer portion of the R value and N limited to decimal value 6, 7, 8, 9, 10, 11, or 12

 $K = (2^{24})(0.abcdefgh)$ , rounded to the nearest whole integer value, then converted to hexadecimal 24-bit value

REG44[3:0] is set with the whole number integer portion (N) of the multiplier

REG41-REG43 is set collectively with the 24-bit fractional portion (K) of the multiplier

REG44[4] PLL Prescaler set as necessary

REG40[4:2] Master Clock Prescaler and BCLK Output Scaler set as necessary

#### 8.3.1 Phase Locked Loop (PLL) Design Example

The target IMCLK rate is always 24.576MHz, which implies a PLL frequency f₂ of 98.304MHz.

In this example system design, there is already an available 12.000MHz clock from the USB subsystem. To reduce system cost, this clock will also be used for audio. Therefore, to use the 12MHz clock for

### nuvoTon

audio, the desired fractional multiplier ratio would be R = 98.304/12.000 = 8.192. This value meets the requirement that the "xy" whole number portion of the multiplier be in the range between 6 and 12.

To complete this portion of the design example, the integer portion of the multiplier is truncated to the value, 8. The fractional portion is multiplied by  $2^{24}$ , as to create the needed 24-bit binary fractional value. The calculation for this is:  $(2^{24})(0.192) = 3221225.472$ . It is best to round this value to the nearest whole value of 3221225, or hexadecimal 0x3126E9. Thus, the values to be programmed to set the PLL multiplier whole number integer and fraction are:

R44	0xnm8	; integer portion of fraction, (nm represents other settings in R44)
R41	0x31	; highest order 8-bits of 24-bit fraction
R42	0x26	; middle 8-bits of 24-bit fraction
R43	0xE9	; lowest order 8-bits of 24-bit fraction

Below are additional examples of results for this calculation applied to commonly available clock frequencies.

MCLK (MHz)	PLL oscillator f ₂ (MHz)	PLL Prescaler divider	Master Clock divider	Fractional Multiplier $R = f_2/f_1$	Integer Portion N (Hex)	Fractional Portion K (Hex)
12.0	98.3040	1	1	8.192000	8	3126E9
14.4	98.3040	1	1	6.826667	6	D3A06D
19.2	98.3040	2	1	10.240000	А	3D70A3
19.8	98.3040	2	1	9.929697	9	EE009E
24.0	98.3040	2	1	8.192000	8	3126E9
26.0	98.3040	2	1	7.561846	7	8FD526

Table 8-3: PLL Frequency Examples

#### 8.3.2 PLL_CLK

Address	ŀ	Access Mode		Value At Reset						
0x040		R/W		0x20						
Bit 7	Bit 6	Bit 6 E		5	Bit 4 Bit 3			Bit 2	Bit 1	Bit 0
Reserved	MIC_C	CLK	OSF	र	MCLK		MCLK_DIV		OPCLK_DIV	

OPCLK_DIV	Divisor of MCLK for optional GPIO clock output. $f_{OPCLK} = f_{PLL} / (OPCLK_DIV+1)$ .
MCLK_DIV	Master clock scaler. Used to adjust clock to 24.576MHz for correct operation. Divisors are: 000=1, 001=1.5, 010=2, 011=3, 100=4, 101=6, 110=8, and 111=12.
OSR	Oversampling rate of DAC. 1: OSR = high (lower out of band noise), 0: OSR = low.
MIC_CLK	Microphone sampling clock frequency. 1: 64kHz, 0: 32kHz.



	Address 0x041-0x043 Bit7 Bit6		Access Mode R/W			al Value				
ſ			Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
ľ	t	PLL_FRAC [23:16]								
ľ		PLL_FRAC [15:8]								
ſ		PLL_FRAC [7:0]								

PLL_FRAC The PLL fractional divider. This 24 bit number represents the fractional part of the PLL divider ratio R. Value of fractional part is PLL_FRAC  $\div 2^{24}$ 

8.3.4 PLL_	CTR	L						
Address		Access I	Mode	Value At Res	et			
0x044		R/M	1	0x88			5	82.4
Bit 7	Bit 7 Bit 6		Bit 5 Bit 4		Bit 3	Bit 2	Bit 1	Bit 0
PLL EN	PLL	BYPASS	Reserved	PLL_PRESC		PLL	DIV N	÷

PLL_EN	PLL_BYPASS	Reserved	ALER	PLL_DIV_N
PLL_EN	Enable	e PLL		

PLL_BYPASS	Bypass PLL and apply XTALIN clock directly to CLKM
PLL_PRESCALER	PLL Prescaler. 0: $f_1 = XTALIN$ , 1: $f_1 = XTALIN/2$
PLL_DIV_N	Integer portion of PLL divisor ratio R. Must be in the range 6-12.

*To disable PLL_EN, first set (REG0x03) DPLL_EN = 0 and (REG0x44) PLL_BYPASS = 1. DPLL_EN cannot be enabled while PLL is disabled.

#### 8.4 Digital Audio Interface Control

The ISD61S00 has a flexible digital audio interface to enable communication of digital serial audio. Communication is controlled by a bit clock and frame synchronization signal. The ISD61S00 has two physical transmit/receive channels, each capable of carrying two audio channels, to allow connection to multiple digital audio sources. Both these channels share common clock and synchronization. The clock and frame sync can be configured as outputs (ISD61S00 is master and generates clock and frame sync) or inputs (ISD61S00 is slave and accepts clock and frame sync). In slave mode the master clock input must either be synchronous to the frame sync signal or the internal digital PLL must be enabled to allow data synchronization.

### nuvoTon

The audio path of the ISD61S00 can generate/accept two channels of audio data. These can be routed to either PCM interface. In addition data can be looped from one PCM interface to the other.

The interface has a variety of modes. In I2S mode, PCM interface conforms to the I2S digital audio interface convention where left channel data is active when frame sync is low (WS=0) and right channel when frame sync is high (WS=1). In PCM mode data transfer is synchronized to the rising edge of the frame synch (WS) signal. Where data is placed for each channel is configurable through time slot control registers.

#### 8.4.1 PCM_CFG

Address	Address Access		s Mode	le Value At Reset						
0x050		R/W		0x00			- m - m			
Bit 7	E	Bit 6		Bit 5 Bit 4		Bit 3		Bit 2	Bit 1	Bit 0
SCK_INV	TR	RI_EN	PCM_I	2S	PCM_MODE	PCM1L	-	PCM1R	PCML	PCMR

PCMR	Enable PCM/I2S data out on right channel.
PCML	Enable PCM/I2S data out on left channel.
PCM1R	Enable PCM/I2S data out on right channel of PCM1 interface
PCM1L	Enable PCM/I2S data out on left channel of PCM1 interface
PCM_MODE	0: Master Mode, ISD61S00 generates SCK and WS. 1: Slave Mode, ISD61S00 accepts WS and SCK from host.
PCM_I2S	0: I2S mode. 1: PCM mode.
TRI_EN	Tristates the PCM bus after second half of LSB.
SCK_INV	0: Data clocks on rising edge of SCK. 1: data clocks on falling edge of SCK

The PCM/I2S bus uses GPIO pins 4-9 as listed below and is enabled by setting the PORTA_AF and PORTB_AF registers to enable the alternate functions of these pins. SCK frequency in master mode is controlled by CLK_CTRL (0x003) register (Section 8.2.4).

GPIO Port	GPIO Pin	I2S Name	Description	PCM Name	Master mode Direction	Slave Mode Direction
PORTA<4>	GPIO<4>	SDO	Serial Data Out	ТΧ	0	0
PORTA<5>	GPIO<5>	WS	WS/Frame Sync	FS	0	I
PORTA<6>	GPIO<6>	SCK	Serial Bit Clock	BCLK	0	I
PORTA<7>	GPIO<7>	SDI	Serial Data In	RX		I
PORTB<0>	GPIO<8>	SDO1	Serial Data Out1	TX1	0	0
PORTB<1>	GPIO<9>	SDI1	Serial Data In1	RX1	I	I

In addition to I2S mode the interface can be configured into a generic PCM interface with control of where and how data is transmitted/received.



### 8.4.2 PCM_TSLOTL

Address		Access	s Mode	Value At Res	set			
0x051		R/	W	0x01				
Bit 7	E	Bit 6 Bit		Bit 4 Bit 3		Bit 2	Bit 1	Bit 0
TSLOTL[7:0]								

TSLOTL[9:0] Left channel PCM data starts TSLOTL clocks after WS rising edge. Bits 9:8 are in PCM_COMP0 register.

#### 8.4.3 PCM_TSLOTR

Address	Access Mode			Value At Res	et					
0x052		R/W		0x11						
Bit 7	E	Bit 6 Bit 5		5	Bit 4	Bit 3	Bit 2 Bit 1		Bit 0	
TSLOTR[7:0]										

TSLOTR[9:0]	Right channel PCM data starts TSLOTR clocks after WS rising edge. Bits 9:8 are in
	Right channel PCM data starts TSLOTR clocks after WS rising edge. Bits 9:8 are in PCM_MODE register.

### 8.4.4 PCM_COMP0

Address		Access	Mode Value At Rese		et				
0x053		R/	2/W 0x00						
Bit 7	E	Bit 6	Bit 5		Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TSLO	TSLOTR[9:8] TSL		SLO	TL[9:8]	RX_COMP	RX_ULAW	TX_COMP	TX_ULAW	

RX_COMP	1: Enable receive companding. 0: disable
RX_ULAW	1: Rx aLaw companding. 0: Rx uLaw companding.
TX_COMP	1: Enable transmit companding. 0: disable
TX ULAW	1: Tx aLaw companding, 0: Tx uLaw companding,

### 8.4.5 PCM_TSLOTL1

Address	Access	s Mode	Value At Rese	et			
0x054 R/W			0x01				
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	No.	2 SA	TSLOT	L1[7:0]			

TSLOTL1[9:0] Left channel PCM1 data starts TSLOTL clocks after WS rising edge. Bits 9:8 are in PCM_COMP0 register.

#### 8.4.6 PCM_TSLOTR1

nuvoton

Address		Access Mode		Value At Res	set			
0x055	0x055 R/W		0x11	0x11				
Bit 7	В	Bit 6 Bit		Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	TSLOTR1[7:0]						2	

TSLOTR1[9:0] Right channel PCM1 data starts TSLOTR clocks after WS rising edge. Bits 9:8 are in PCM_MODE register.

#### 8.4.7 PCM_COMP1

Address		Access	Mode	de Value At Reset		et			
0x056		R/	W	0x00					15
Bit 7	E	Bit 6	Bit 5		Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TSLOT	TSLOTR1[9:8] T		SLOT	Ľ1[9:8]	RX_COMP1	RX_ULAW1	TX_COMP1	TX_ULAW1	

RX_COMP1 1: Enable receive companding. 0: disable (PCM1)

RX_ULAW1 1: Rx aLaw companding. 0: Rx uLaw companding. (PCM1)

TX_COMP1 1: Enable transmit companding. 0: disable (PCM1)

TX_ULAW1 1: Tx aLaw companding. 0: Tx uLaw companding. (PCM1)

The following diagram illustrates the various signals that can be routed to the PCM/I2S interfaces.

### nuvoTon

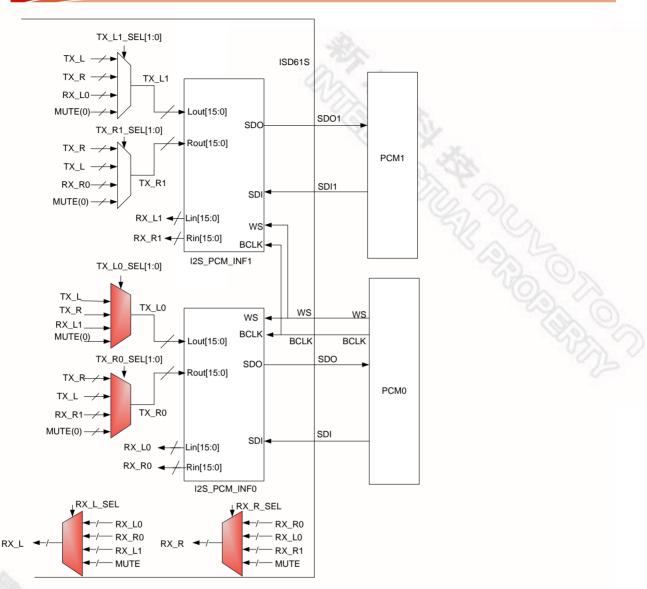



Figure 8-5 PMC/I2S signal routing

#### 8.4.8 PCM_TX_SEL

Address	Acces	s Mode	Value At Res	et			
0x057	0x057 R/W		0x00				
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TX_R1	TX_R1_SEL		1_SEL	TX_R0_SEL		TX_L0_SEL	

TX_L0_SEL Select what audio to send on left channel of PCM bus

### nuvoTon

- TX_R0_SEL Select what audio to send on right channel of PCM bus
- TX_L1_SEL Select what audio to send on left channel of PCM1 bus
- TX_R1_SEL Select what audio to send on right channel of PCM1 bus

#### 8.4.9 PCM_RX_SEL

Address	Acces	s Mode	ode Value At Reset				
0x058	0x058 R/W		0x00		Va as		
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Rese	Reserved		erved	RX_	R_SEL	RX_L_SEL	

RX_L_SEL Select what audio to send to left channel signal path.

RX_R_SEL Select what audio to send to right channel of signal path

	TX_L0_SEL	TX_R0_SEL	TX_L1_SEL	TX_R1_SEL	RX_R_SEL	RX_L_SEL
0	TX_L	TX_R	TX_L	TX_R	RX_R0	RX_L0
1	TX_R	TX_L	TX_R	TX_L	RX_L0	RX_R0
2	RX_L1	RX_R1	RX_L0	RX_R0	RX_R1	RX_L1
3	MUTE	MUTE	MUTE	MUTE	MUTE	MUTE

### 8.5 GPIO and Interrupt Configuration

The ISD61S00 contains up to 17 GPIO pins. These pins can be configured as inputs or outputs, have configurable drive strength and pull-up pull-down capability. Some GPIO pins have an alternate optional function, such as I2S interface or ring detector input. The GPIO are divided into three ports: A, B and C. PORTA consists of GPIO<7:0>, PORTB consists of GPIO<15:8> and PORTC consists of GPIO<16>. The port functionality is controlled by the following configuration registers. Transitions on the GPIO pins can generate a GPIO_INT interrupt and also be configured to wake the chip up from a power-down state. The user must be aware that some GPIO pins have default alternate functions that must be enabled for correct operation (for internal memory devices these include PORTC[7:1] and for external memory devices PORTA[1:0] are used for memory access).

### 8.5.1 PORT_CFG

Address	s Ad	ccess Mode	Value At Res	et Nomin	al Value		
0x00B	0x00B		0x00				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
RDE	RDET_IN		PORTC_L_INT	PORTB_H_INT	PORTB_L_INT	PORTA_H_INT	PORTA_L_INT

### nuvoTon

PORTA_L_INT	If this bit is set, and the corresponding PORTA_IE bit, then transitions on PORTA[3:0] will generate a GPIO wakeup interrupt.
PORTA_H_INT	If this bit is set, and the corresponding PORTA_IE bit, then transitions on PORTA[7:4] will generate a GPIO wakeup interrupt.
PORTB_L_INT	If this bit is set, and the corresponding PORTB_IE bit, then transitions on PORTB[3:0] will generate a GPIO wakeup interrupt.
PORTB_H_INT	If this bit is set, and the corresponding PORTB_IE bit, then transitions on PORTB[7:4] will generate a GPIO wakeup interrupt.
PORTC_L_INT	If this bit is set, and the corresponding PORTC_IE bit, then transitions on PORTC[3:0] will generate a GPIO wakeup interrupt.
PORTC_H_INT	Not used – set to zero.
RDET_IN[1:0]	These bits determine which GPIO port is used as the ring detector input. 0: GPIO<13>, 1: GPIO<14>, 2: GPIO<15>, 3: GPIO<16>

When the ISD61S00 goes into a power-down state the status of the GPIO ports are latched. If a GPIO pin, that has its interrupt enabled and wake-up enabled, toggles the chip will execute a wake-up event. The device will automatically execute Voice Macro 2 if present or, if this voice macro is blank, it will enter the power-up idle state and generate an interrupt to the host.

#### 8.5.2 PORTx_IE

Address		Access Mode		Value At Reset		Nominal Value				
0x00C-0x00E			R/W	0x00						
Bit7	Bit6	5	Bit5	Bit4		Bit3 Bit2		Bit1	Bit0	
PORTA_IE										
				PORT	B_IE					
	PORTC_IE									

PORTA_IE This register is the interrupt enable mask for PORTA. If the bit is set then that GPIO can generate a GPIO_INT event. Similarly for PORTB_IE and PORTC_IE

8.5.3 IE0

Addres	Address Access Mode		Value At Rese	et Nomin	al Value		
0x014	15	R/W	0xFF				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
GPIO_INT	MPT_ERR	WR_FIN	CMD_ERR	OVF_ERR	CMD_FIN	ADDR_ERR	FULL_ERR

The IE0 register enables the interrupt associated with the bit mask and corresponds to the interrupt status bits in STATUS_REG[1].

### nuvoTon

#### 8.5.4 IE1

Addres	s	Ac	cess Mode	Value At Res	t Nominal Value			
0x015			R/W	0xFF				
Bit7	Bit6		Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
RNG_INT	CAS_I	NT	FSK_D	FSK_E	TONE_INT	DTMF_INT	CPT_INT	VD_INT /TIMER_INT

The IE1 register enables the interrupt associated with the bit mask and corresponds to the interrupt status bits in STATUS_REG[2].

#### 8.5.5 PORTA_DO

Address	s	Access Mode	ss Mode Value At Reset Nom		nal Value					
0x019		R/W	0x00				120			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
	PORTA_DO									

PORTA_DO This register contains the data to be written out the GPIO pins of PORTA. Data will propagate to the pin if the corresponding PORTA_OE bit is enabled.

#### 8.5.6 PORTA_OE

Addres	s	Access Mode		Value At Reset		Nominal Value			
0x01A			R/W	0x00					_
Bit7	Bit6	5	Bit5	Bit4		Bit3	Bit2	Bit1	Bit0
				PORT	A_OE	]			

PORTA_OE This register contains output enable mask for the GPIO pins of PORTA. If a PORTA_OE bit is high data in the PORTA_DO register will propagate to the pin. If low the driver of the pin is in a tri-state condition.

#### 8.5.7 PORTA_PE

Address	s Ac	Access Mode Value At Reset No		et Nomii	nal Value		
0x01B	5	R/W	0xFF				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	Nr. S	20	PORT	A_PE			

PORTA_PE This register contains the pull enable mask for the GPIO pins of PORTA. If a PORTA_PE bit is high then a pull-up or pull-down is connected to the pin depending



on the state of PORTA_PS.

#### 8.5.8 PORTA_DI

Addres	s A	ccess Mode	Value At Res	et Nomir	nal Value		
0x01C	,	R	0xFF		2	12	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
			PORT	A_DI			

PORTA DI This read only register reflects the state of the GPIO pins of PORTA.

#### 8.5.9 PORTA_PS

Addres	s	Access Mode R/W		Access Mode Value At Reset Nominal Value					
0x01D			R/W	0xFF					100
Bit7	Bit6	j	Bit5	Bit4		Bit3	Bit2	Bit1	Bit0
				PORT	A_PS				10

PORTA_PS This register contains the pull select mask for the GPIO pins of PORTA. If a PORTA_PS bit is high then a pull-up is selected or if low a pull-down.

#### 8.5.10 PORTA_DS

Addres	s	Access Mode		Access Mode Value At Reset		et	Nominal Value			
0x01E	;		R/W	0x00						
Bit7	Bite	5	Bit5	Bit4		Bit3	Bit2	Bit1	Bit0	
1				PORT	A_DS					

PORTA_DS This register selects the drive strength of PORTA pins. A high selects high drive a low configures a normal drive capability. Refer to Section 3 for drive value.

#### 8.5.11 PORTA_AF

Addres	s	Access Mode	Value At Rese	et Nomir	nal Value		
0x01F		R/W	0x03				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	0	202	PORT	A_AF			

### ηυνοτοη

PORTA AF This register selects the alternate function of the GPIO pin.

The ports B and C have similar control registers with the following addresses:

Register	Address (HEX)
PORTA_DO	019
PORTA_OE	01A
PORTA_PE	01B
PORTA_DI	01C
PORTA_PS	01D
PORTA_DS	01E
PORTA_AF	01F
PORTB_DO	030
PORTB_OE	031
PORTB_PE	032
PORTB_DI	033

Register	Address (HEX)
PORTB_PS	034
PORTB_DS	035
PORTB_AF	036
PORTC_DO	037
PORTC_OE	038
PORTC_PE	039
PORTC_DI	03A
PORTC_PS	03B
PORTC_DS	03C
PORTC_AF	03D
	0



## nuvoTon

The following ports have alternate functions:

Port	GPIO Pin	Alternate Function	Description		
PORTA<0>	GPIO<0>	DO	DO pin for external memory access		
PORTA<1>	GPIO<1>	CLK	CLK pin for external memory access		
PORTA<4>	GPIO<4>	SDO	I2S Serial Data Out		
PORTA<5> GPIO<5>		WS	I2S WS		
PORTA<6>	GPIO<6>	SCK	I2S Serial Clock		
PORTA<7>	GPIO<7>	SDI	I2S Serial Data In		
PORTB<0>	GPIO<8>	SDO1	PCM1 Tx Data		
PORTB<1>	GPIO<9>	SDI1	PCM1 Rx Data		
			S. G.		

#### 8.6 16 bit Indirect Index register R0-R7

- 16 bit R0 ~ R7 register store the VP/VM indexes for the indirect playback commands. Indirect Playback commands include:
  - o <u>PLAY_VP@Rn</u>
  - o <u>PLAY_VP_LP@Rn</u>
  - o <u>EXE_VM@Rn</u>

For example: If R0=0x0020, then a PLAY_VP@R0 command will actually play VP @ index 0x0020; a - EXE_VM@R0 command will actually execute VM @ index 0x0020

			R0-R7 Reg	ister Mapping	g		
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
			CFG2	<b>:0</b> R0[7:0]			
			CFG2	<b>1</b> R0[15:8]			
			CFG2	2 R1[7:0]			
and the second			CFG2	<b>3</b> R1[15:8]			
2 The			CFG2	24 R2[7:0]			
CAN 3	6		CFG2	<b>5</b> R2[15:8]			
TON S	2		CFG2	<b>26</b> R3[7:0]			
S.	10		CFG2	<b>7</b> R3[15:8]			
Q	2.40		CFG2	<b>8</b> R4[7:0]			
		1	CFG2	<b>9</b> R4[15:8]			
	~ 422	a	CFG2	<b>A</b> R5[7:0]			
	NP2	202	CFG2	<b>B</b> R5[15:8]			

Publication Release Date: March 10, 2011 Revision 2.7

- 53 -



8.7.1

**MIC CTRL** 

<b>CFG2C</b> R6[7:0]	
<b>CFG2D</b> R6[15:8]	
<b>CFG2E</b> R7[7:0]	
<b>CFG2F</b> R7[15:8]	

#### 8.7 Microphone interface and Auxiliary Interface

The ISD61S00 contains a fully integrated programmable microphone interface. No external components other than the microphone are required to operate the circuit. The microphone interface can operate in three modes: 1) Microphone Voltage gain mode; 2) Microphone Current gain mode; 3) Auxiliary input mode. For the Current gain mode an internal or external resistor can be selected to determine the gain. For the Auxiliary input mode it is recommended external resistors are used, though optionally the internal gain resistor can be selected.

The interface modes above can be selected with register MIC MODE[2:0] of register MIC CTRL. The microphone block is powered down until MIC EN bit of MIC CTRL is set to one.

In order to minimize the audible pops and clicks, it is not advised to change the MIC GAIN[7:4] in real time but preferably mute the digital signal path prior to any gain changes.

Address		Access	Mode	Value At Rese		et				
0x006		R/	W		0x00					
Bit 7	Bit	6	Bit 5		Bit 4	Bit 3		Bit 2	Bit 1	Bit 0
	MIC_GAIN						1		MIC_MODE	

MIC_MODE[2:0] Sets AC input amplifier mode of operation (voltage mode, current mode, external resistor, internal resistor)

MIC_MODE[2:0]	Operation mode
000	Microphone Voltage-gain mode with internal gain resistor
001	Not allowed
010	Microphone Current-gain mode with internal gain resistor
011	Microphone Current-gain mode with external gain resistor
100	Auxiliary input mode with internal gain resistor
101	Auxiliary input mode with external gain resistor
	Publication Release Date: March 10, 201 - 54 - Revision 2.

Table 8-4 Microphone and Auxiliary mode settings

nuvoTon

MIC_GAIN[7:4] Set microphone gain in voltage-gain mode. Adjustable voltage gain range: 14dB~37.6dB, 16 steps linear in dB with step size of approximately 1.5dB.

MIC_GAIN[7:4]	Gain(dB)	Boosted	MIC_GAIN[7:4]	Gain(dB)	Boosted
0000	37.65	43.1	1000	24.80	30.5
0001	35.98	41.5	1001	23.17	28.7
0010	34.33	40	1010	21.53	27.05
0011	32.70	38.2	1011	19.95	25.5
0100	31.06	36.6	1100	18.54	24.2
0101	29.47	35.05	1101	16.86	22.4
0110	27.89	33.5	1110	15.52	21.2
0111	26.38	31.88	1111	13.95	19.5

Table 8-5 Microphone Gain settings

#### 8.7.2 MIC_BIAS

Address		Access	Access Mode Value At Rese		et				
0x007	0x007		R/W		0x00				
Bit 7	E	Bit 6	Bit	5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MIC_RES						BOOST		MIC_BIAS	

BOOST Boost microphone voltage gain.

MIC_BIAS[2:0]	Vref (V)
000	1.992
001	2.191
010	2.434
011	2.738
100	1.218
101	1.253
110	1.512
111	1.754



### nuvoTon

#### MIC_RES[7:4] Set microphone bias resistor

Table 8-7 Microphone Resistor settings

		Cada	
MIC_RES[7:4]	RL (kΩ)	Code	RL (kΩ)
0100	Open	1100	1.25
0101	10	1101	1.11
0110	5	1110	1
0111	3.33	1111	0.91
0000	2.5	1000	0.83
0001	2	0.77	
0010	1.67	1010	0.71
0011	1.42	1011	0.67

The basic operation of the voltage gain mode is shown in Figure 8-6 Microphone Voltage Gain Mode . The microphone is connected to the pins MCP and MCGND. The pin MCO is connected to the output of the microphone amplifier and can be used for monitoring the AC level. The voltage gain is set by register MIC_GAIN[7:4]. This register provides a gain range from 14dB to 38dB. In addition the BOOST bit of MIC_BIAS[3] can be enabled to add an additional 6dB voltage gain. The gain is set by a ratio of internal resistors, providing accurate gain control. The pin MCP also supplies the bias reference for the microphone. The bias consists of a programmable resistor and a programmable low noise voltage reference. The programmable resistor is set by register MIC_RES[7:4] and can be set to open and 670 Ohm to 10kOhm. The programmable voltage reference is set by register MIC_BIAS[2:0] and can be set from 1.22Volt to 2.74Volt.

Publication Release Date: March 10, 2011 Revision 2.7

### nuvoTon

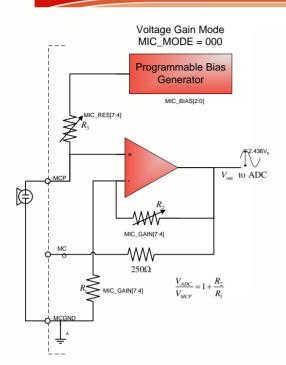



Figure 8-6 Microphone Voltage Gain Mode

For higher gain configurations, the **current gain mode** can be used. Figure 8-7 Microphone Current Gain Mode

shows how the current gain mode is used. The current gain mode uses the same programmable microphone bias voltage and resistor as the voltage gain mode. The gain is set by either the internal gain resistor or an external resistor, depending on the MIC_MODE setting. Since the current gain mode is using a single resistor, the gain accuracy is limited. However, large gain can be achieved. Note that a 2500hm ESD protection resistor is connected to the MCO pin. This resistor should be considered when calculating the gain.

Publication Release Date: March 10, 2011 Revision 2.7

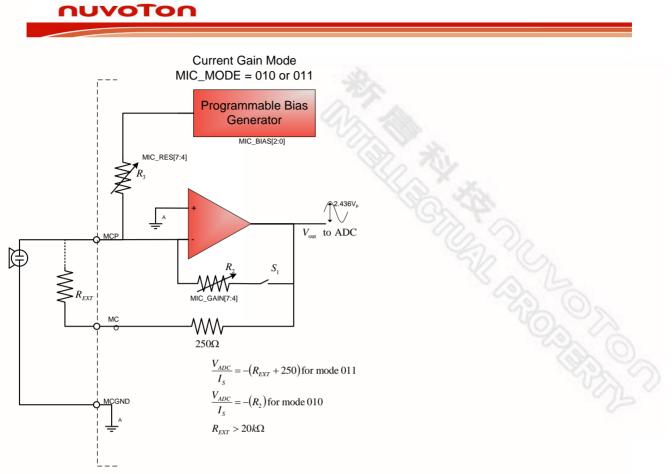



Figure 8-7 Microphone Current Gain Mode

The value of  $R_2$  feedback resistor for mode 010 is shown below. It fixes the transimpedance gain. The resistor accuracy is +/-15%.

MIC_GAIN[7 :4]	R₂(kΩ)
0	300
1	247
2	203
3	167
4	137
5	113
6	93
7 63	76
8	63
9	52
10	42
11	35
12	29

13	24
14	19
15	16

nuvotor

The voltage gain from MCP to MCO can be expected in the range of 29 to 55dB with a standard electret microphone and a microphone bias resistor set to 10K Ohm (MIC_RES[7:4]=0x05) The voltage gain from MCP to MCO can be expected in the range of 26 to 49dB with a standard electret microphone and a microphone bias resistor set to 0.67K Ohm (MIC_RES[7:4]=0x0B)

One should note that the gain depends on the microphone internal characteristics and part number.

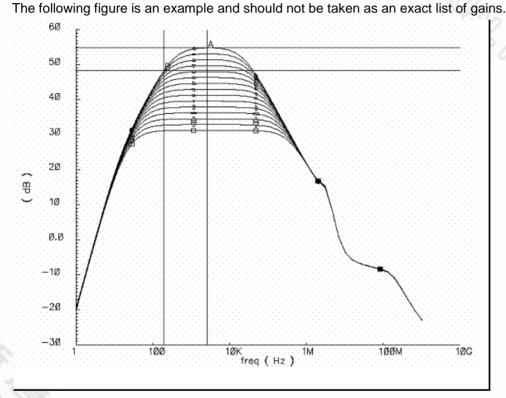



Figure 8-8 Current Mode Gain with Electret MIC model

For non-microphone applications one or more Auxiliary inputs can be connected to the MCP pin as shown in Figure 8-9 Auxiliary Input Mode

below. The MIC_RES register should be set to open in order to disconnect the microphone bias. For the gain setting it is advised to use external gain resistors only for optimal matching and accuracy. The 250Ohm ESD protection resistor should be considered again when calculating the gain. Note that for this mode the MCGND pin is tied to the external supply ground. A clean ground reference should be used for this.

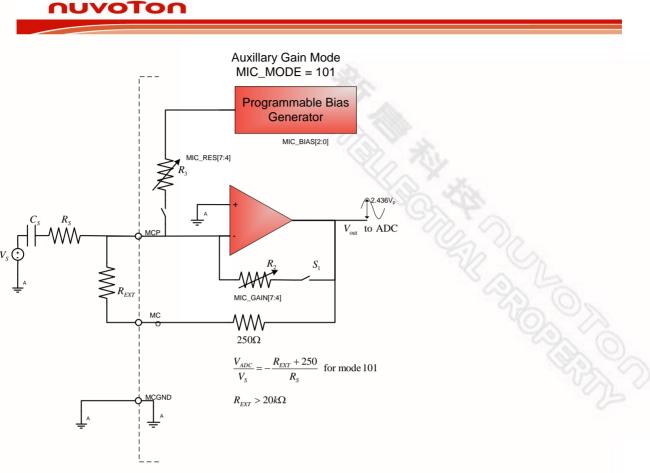



Figure 8-9 Auxiliary Input Mode

#### 8.8 PSTN Analog Input

The PSTN analog input consists of two multiplexed pins to allow on-hook CID snooping along with normal off-hook operation. Input amplifier consists of two stages with independently settable gains as described in Table 8-8.

The input source of each stage is controlled by a multiplexor set by registers described in Table 8-9. Stage one input can be selected from the TI1 input, the TI2 input or a loop-back of the PO output. Stage two inputs can be stage one allowing cascading of gains, or stage one can be bypassed and inputs of TI1, TI2 or TI3 can be selected. Note that TI3 is not necessary available as described in the Pin Configuration (section 3). The two gain stages together can provide gains from 0dB to 42dB. In addition, power control for this amplifier is controlled by the TI_EN bit of the TI_CTRL register.

Inputs should be capacitively coupled into the TIxN and TIxP pins. The gain stage feeds the Line ADC which has a full scale range of Avdd/( $2^{*}1.41$ )V_{rms} or Avdd/2 V_p.

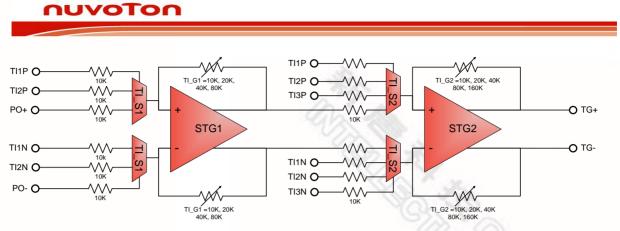



Figure 8-10 TI Input Amplifier

#### 8.8.1 TI_GAIN

Address		Access	Mode		Value At Res	Value At Reset				
0x004		R/	W		0x00				22	28
Bit 7	E	Bit 6	Bit	5	Bit 4	Bit 3		Bit 2	Bit 1	Bit 0
RESERVED				TI_G2				TI	_G1	

TI_G1[1:0] Set stage 1 TI amplifier gain.

TI_G2[2:0] Set stage 2 TI amplifier gain.

#### 8.8.2 TI_CTRL

Address		Access	s Mode		Value At Res	et				
0x005		R/	W		0x00					
Bit 7	E	Bit 6	Bit	5	Bit 4	Bit 3		Bit 2	Bit 1	Bit 0
TI_EN		RESERVED					TI_	S2	TI_	_S1

TI_S1[1:0] Select input of stage 1 TI amplifier.

TI_S2[1:0] Select input of stage 2 TI amplifier.

TI_EN Enable (power up) TI amplifier.

### ηυνοτοη

#### First stage selection

TI_S1[1]	TI_S1[0]	input selected	(A)
0	0	none	Don't use
0	1	TI1	Select TI1 pins
1	0	TI2	Select TI2 pins
1	1	PO*	Select PO pins

#### Second stage selection

TI_S2[1]	TI_S2[0]	input selected	march
0	0	Output of stage 1	default
0	1	TI1	Select TI1 pins
1	0	TI2	Select TI2 pins
1	1	TI3	Select TI3 pins

* When this mode is selected the PO+ PO- pins are internally connected to the input of the PSTN analog interface.

#### First stage gain settings

TI_G1[1]	TI_G1[0]	gain	unit
0	0	0	dB
0	1	6	dB
1	0	12	dB
1	1	18	dB

#### Second stage gain settings

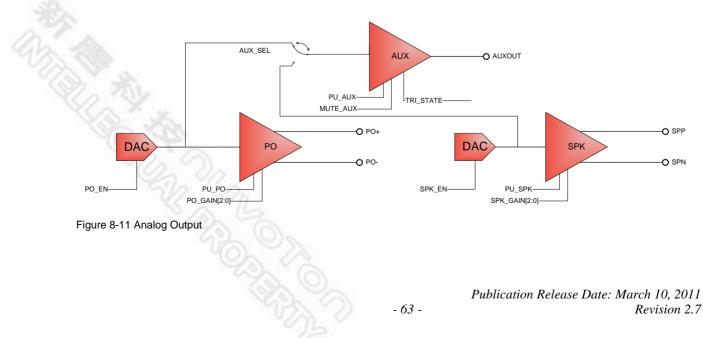
TI_G2[2]	TI_G2[1]	TI_G2[0]	gain	unit
0	0	0	0	dB
0	0	1	6	dB
0	1	0	12	dB
0	1	1	18	dB
1	0	0	24	dB



TI_G	1[1:0]		TI_G	2[2:0]	
Bin	Hex	Gain [dB]	Bin	Hex	Gain [dB]
00	0	0 dB	000	0	0 dB
01	1	6 dB	001	1	6 dB
10	2	12 dB	010	2	12 dB
11	3	18 dB	011	3	18 dB
			100	4	24 dB

Table 8-8 TI Gain Settings

Table 8-9 TI MUX Settings


TI_S	1[1:0]		TI_S:	2[1:0]	20 1	
Bin	Hex	Input	Bin	Hex	Input	
00	0	None	00	0	STG1	
01	1	TI1	01	1	TI1	
10	2	TI2	10	2	TI2	
11	3	PO	11	3	TI3	

#### 8.9 Analog Outputs

Analog outputs consist of a differential speaker driver capable of driving  $8\Omega$  and a differential line driver for the PSTN interface capable of driving  $120\Omega$ . These buffers are connected to the two DAC paths incorporating digital gain control. The ANA_OUT register controls the analog function of these two drivers allowing power control via SPK_EN and PO_EN and gain setting (including MUTE) via PO_GAIN and SPK_GAIN. In addition a single-ended AUX output capable of driving a load of 1uF plus 47K $\Omega$  in series is available. The AUX driver full scale output voltage is half the one of the PO and SPK drivers.

When the PO and SPK drivers are power down their outputs are tri-stated. When the AUX driver is power down tri-state is achieved by setting the register TRI_STATE to 1.

When enabled, the DC level on the analog outputs is typically AVDD/2.



## nuvoTon

#### 8.9.1 ANA_OUT

Address	Acce	s Mode	Value At Res	set			
0x008	F	R/W	0x00	m.C.			
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PO_EN	PO_GAIN			SPK_EN		SPK_GAIN	

SPK_GAIN	Set speaker driver gain
SPK_EN	<ul><li>= 0 Disable (power down) speaker DAC</li><li>= 1 Enable speaker DAC</li></ul>
PO_GAIN	Set line driver gain

at an a altra a dub tan mab

PO_EN = 0 Disable (power down) line DAC = 1 Enable line DAC

SPK_GAIN[2:0]	Gain(dB)
0XX	MUTE
100	0
101	0
110	3
111	-3

PO_GAIN[5:4]	Gain(dB)
0XX	MUTE
100	0
101	0
110	3
111	-3

#### 8.9.2 ANA_CTRL

Γ	Address		Access Mode		Value At Reset						
	0x009		R/	W		0x00					_
Γ	Bit 7	E	Bit 6	Bit 5		Bit 4	Bit 3		Bit 2	Bit 1	Bit 0
	PU_PO	PU	_SPK	AUX_SI	EL	TRI_STATE	Re	ese	rved	PU_AUX	MUTE_AUX

MUTE_AUX

- = 0 Mute auxiliary buffer
- = 1 Un-mute auxiliary buffer.

PU_AUX

- = 0 power down
- = 1 power up

TRI_STATE

- = 0 Default
- = 1 Disconnect any impedances from the AUXOUT output

AUX_SEL

- = 0 PSTN DAC is selected (default)
- = 1 SPEAKER DAC is selected

### nuvoTon

PU_SPK	= 0	power down
	= 1	power up
PU_PO	= 0	power down

= 1 power up

#### 8.10 DTMF Detection

Dual Tone Multi Frequency (DTMF) signals consist of a sum of two tones: a low tone of 697Hz, 770Hz, 852Hz or 941Hz (row tone) and a high tone of 1209Hz, 1336Hz, 1477Hz or 1633Hz (column tone) as shown in Table 8-10. The DTMF detector filters the incoming signal and separates it into row and column tones, as shown in Figure 8-12. When valid data is detected, the resulting decoded data is pushed onto a FIFO which can be read by the host through the SPI interface.

When DTMF detection is enabled channel data is scanned for DTMF tones. Three programmable timer registers – Present Detect Time (DTMF_PDT), Acceptance Time (DTMF_ACCT), and Absent Detect Time (DTMF_ADT) – and the frequency deviation (DTMF_FREQ_DEV) and threshold (DTMF_THRES) registers allow the user to configure the sensitivity of the DTMF detector, as shown in Figure 8-13 and described below.

The DTMF detector performs a frequency estimation calculation to determine the frequencies present in the channel data input. Once the input signal has been determined to carry energy exceeding DTMF_THRES at one of the row (column) frequencies for DTMF_PDT within the error tolerance specified by DTMF_FREQ_DEV, the row (column) detect flag is asserted.

When both the row and column detect flags have been asserted, the DTMF_STATE goes to 1. Once the DTMF_STATE has been high for DTMF_ACCT, the signal is determined to be a valid DTMF signal. At this point, DTMF_RDY is asserted and the received data is decoded from the row and column frequencies and pushed onto the FIFO. The DTMF_STATE and DTMF_RDY status flags may be read from the DTMF_RX_DATA status register.

When the tone is outside of the tolerance specified by DTMF_FREQ_DEV for DTMF_ADT, the row (column) detect flag is de-asserted.

When a DTMF tone is detected the ISD61S00 can be configured to generate an interrupt to the host processor for service.

DTMF detection is available with the 8KHz sampling rate.

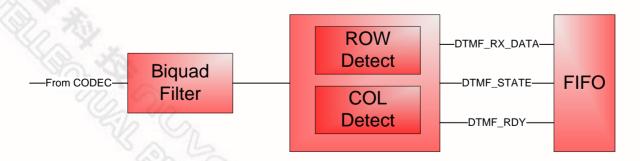



Figure 8-12 DTMF Detector - Functional Block Diagram

## ηυνοτοη

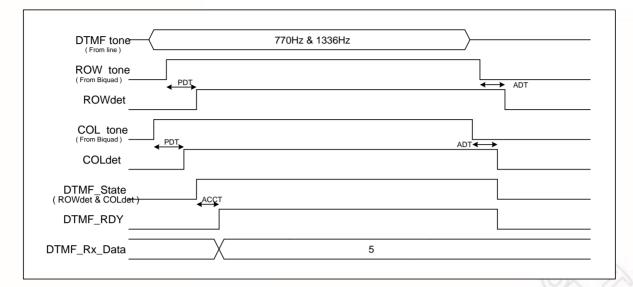



Figure 8-13 DTMF Detector Acquisition Timing

Table 8-10 DTMF Tone Decoding

		Column frequency							
		1209 Hz	1336 Hz	1477 Hz	1633 Hz				
	697 Hz	0x01 _{hex}	0x02 _{hex}	0x03 _{hex}	0x0D _{hex}				
	007 112	1	2	3	А				
Row	770 Hz 852 Hz	0x04 _{hex}	0x05 _{hex}	0x06 hex	0x0E _{hex}				
Frequency		4	5	6	В				
		0x07 _{hex}	0x08 hex	0x09 _{hex}	0x0F _{hex}				
-	002 112	7	8	9	С				
	941 Hz	0x0B _{hex}	0x0A _{hex}	0x0C hex	0x00 _{hex}				
	V71112	*	0	#	D				

A detailed description of the DTMF Decoder control registers follows:



#### 8.10.1 DTMF_CTRL

Address	Address A		Access Mode Value A		et Nominal Value			
0x1E0		R/W		0x00				_
Bit7	Bit6	6 Bit5		Bit4	Bit3	Bit2	Bit1	Bit0
DTMF_EN	Reserv	ved	DTMF_F	REQ_DEV		DTM	F_TC	-

DTMF_TC Sets the time constant used for DTMF signal energy level estimation. The DTMF_TC constant controls the speed at which the energy converges. Smaller values of DTMF_TC cause faster convergence at the expense of lower precision. Higher values of DTMF_TC will provide a more precise estimate of the energy while trading off a slower convergence time.

- DTMF_FREQ_DEV The allowable frequency deviation of DTMF tone detector. As given in Table 8-11
- DTMF_EN Enable DTMF detection block.

Table 8-11 DTMF Frequency Deviation Register

DTMF_FREQ_DEV	Frequency Deviation
0	2.0%
1	2.5%
2	3.0%
3	3.5%

#### 8.10.2 DTMF_FIFO_CTRL

	Address	ss A		Access Mode V		Value At Reset		al Value		
	0x1E1		R/W		0x40					_
ŝ	Bit7	Bite	Bit6 Bit5		Bit4		Bit3	Bit2	Bit1	Bit0
-	Reserved	FIFO_LEN			Re	eserved	Reserved	Reserved	FIFO_CLR	

FIFO_LEN Sets the FIFO level at which the DTMF detector generates an interrupt to the host. Interrupt is generated when FIFO_LEN+1 tones have been received.

FIFO_CLR Resets FIFO to empty and clear the content of the FIFO.

### nuvoTon

#### 8.10.3 DTMF_FIFO

Address	Address Access Mode		Value At Reset	t Nominal Value			
0x1E2		R	0x00				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	FIF	O_DEPTH			FIFO_	DATA	

FIFO_DATA A read to this register reads back the head of the FIFO and increments read pointer to next address.

FIFO_DEPTH Is the number of entries remaining in the FIFO before the current read operation.

#### 8.10.4 DTMF_FIFO_STATUS

Addres	Address		cess Mode	Value At Reset		Nominal Value			
0x1E3	0x1E3 R/W		R/W	0x01					120
Bit7	Bit6	Bit6 Bit5		Bit4	Bit4 Bit3		Bit2	Bit1	Bit0
	F	FIFO_I	DEPTH		Re	eserved	Reserved	FIFO_FULL	FIFO_EMP

FIFO_DEPTH Indicates the number of entries present in the DTMF FIFO, same value as FIFO_DEPTH of previous register

FIFO_FULL Read only active high bit indicating when FIFO is full. Any data received while this bit is high is lost. Total depth of the DTMF FIFO is 8.

FIFO_EMP Read only active high bit indicating when FIFO is empty.

#### 8.10.5 DTMF_THRES

	Address		Ac	cess Mode	Value At Res	et	Nominal Value				
	0x1E4~0x1E5			R/W 0x0100							
6	Bit7 Bit6		5	Bit5	Bit4	Bit3		Bit2		Bit1	Bit0
ŧ	As.				DTMF_THRES[15:8]						
5	99	DTMF_THRES[7:0]									

E5

E4

DTMF_THRES

DTMF Threshold, signal level required to qualify as a valid DTMF signal. The threshold in dB is given by 10 * log₁₀ (DTMF_THRES * 2⁻²²). The DTMF threshold ranges from -12 dB to -66 dB, and the default is -42 dB. If the signal level is below DTMF_THRES, the results of the frequency estimator are ignored and the signal will not be detected as a valid DTMF signal.



### 8.10.6 DTMF_PDT

Address	Address Access Mode		Value At Reset	Nominal Value					
0x1E6		R/W	0x00						
Bit7	Bit6	Bit5	Bit4 Bit		Bit2	Bit1	Bit0		
DTMF_PDT									

DTMF_PDT This is the Present Detect Time, the time for which a tone must be present to be qualified as a valid DTMF tone. Units are 0.5ms, range is 0-127.5ms.





#### 8.10.7 DTMF_ADT

Address		Access Mode		Value At Reset	Nomin	al Value		
0x1E7 R/W		R/W	0x00					
Bit7	Bit6	t6 Bit5		Bit4	Bit3	Bit2	Bit1	Bit0
				DTMF_	ADT	90. A	J.	

DTMF_ADT This is the Absent Detect Time, the time for which a tone must be absent before a signal is considered a new DTMF tone. Units are 0.5ms, range is 0-127.5ms.

#### 8.10.8 DTMF_ACCT

Address	Address		Value At Res	et Nomi	nal Value					
0x1E8		R/W	0x00				32.0			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
	DTMF_ACCT									

DTMF_ACCT This is the Accept Time, (DTMF_ACCT + 1) * 0.5ms, the time for which a tone must be stable to be qualified as a correct tone. Units are 0.5ms, range is 0.5-128ms. This guard time improves detection performance by rejecting detected signals with insufficient duration and by masking momentary detection dropout.

#### 8.10.9

#### 8.10.10DTMF_RX_DATA

	Address		Access Mode				lue At Reset	Nominal Val	ue	
	0x1	IEA	R				0x00			
1	Bit7	Bit6	Bit5	t5 Bit4 Bit		it3 Bit2		Bit1	Bit0	
1	DTMF_RDY	DTMF_STATE	RESERVED	RESERVED	DTMF_RX_DATA					

DTMF_RX_DATA DTMF Detector received data. This register can be used as an alternative to the FIFO. This data is valid when DTMF_RDY is active.

DTMF_STATE Indicates whether a valid DTMF tone is currently being detected and present time (PDT) is qualified.

DTMF_RDY Indicates that a valid DTMF tone has been present for required hold time (ACCT).



#### 8.10.11DTMF_ROW_FREQ

	Addres	Address A		Access Mode Value At Reset		et Nom	inal Value		
	0x1EB-0x	1EB-0x1EC		R 0x000					
	Bit7	Bite	5	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
EB					DTMF Row Fr	equency [15:8]			
EC	DTMF Row Frequency [7:0]								

DTMF Row Frequency Frequency

#### 8.10.12DTMF_COL_FREQ

	Addres	s	Ac	cess Mode	Value At Res	et	Nomin	al Value		
	0x1ED-0x	0x1ED-0x1EE		R 0x0000						yo.
	Bit7	Bit7 Bit6		Bit5	Bit4		Bit3	Bit2	Bit1	Bit0
ED		DTMF Column Frequency[15:8]								
EE		DTMF Column Frequency[7:0]								

DTMF Column Frequency DTMF_COL_FREQ[15:3] is the integer part of the DTMF Column frequency, DTMF_COL_FREQ[2:0] is the decimal fraction part of the DTMF Column frequency (13.3 format). These two bytes are for debug mode, and display the DTMF Column frequency directly.

#### 8.10.13Tip & Tricks

Below is an example of an interrupt service routine for the DTMF detector interrupt.

Publication Release Date: March 10, 2011 Revision 2.7

### nuvoTon

#### 8.11 DTMF and Arbitrary Tone Generation.

The ISD61S00 has two independently programmable voice-band oscillators for DTMF and FSK tone generation. The tone generators can be controlled by individual registers or automatically by the DTMF or FSK generation sub-systems.

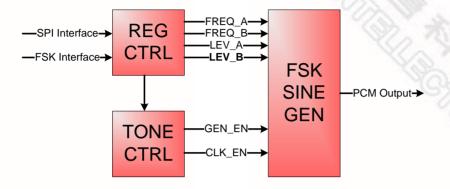



Figure 8-14 Tone Generator Block Diagram

The tone generator block operates in three different modes:

- 1. DTMF Mode: in this mode DTMF digits are generated from data read from a FIFO for a registerspecified on and off time time.
- 2. Programmable Mode: This mode generates a user-defined tone for a register-specified on and time time.
- 3. Continuous Mode: This mode generates a user-defined tone continuously until the user intervenes to stop generation.

In Dual Tone Multi Frequency (DTMF) mode two tones are used to generate a DTMF digit. One tone is chosen from four possible row tones, while the other tone is chosen from four possible column tones. The sum of these tones constitutes one of 16 possible DTMF digits as shown in Table 8-13. Tones are generated according to the data written in the TONE_INDEX_X registers. Up to twenty four DTMF digits can be loaded into these registers for transmission. The register TONE_LENGTH determines how many of these DTMF digits will be generated.

For example, to generate the DTMF string 4085442222, TONE_LENGTH is set to 10, the number of digits to transmit, TONE_INDEX_0 is loaded with 0x40, TONE_INDEX_1 is loaded with 0x85 etc.. To generate the tones, DTMF_MODE, GEN_EN and CLK_EN are all set high in the TONE_CTRL register. When digits have been generated GEN_EN will be self-cleared indicating operation has finished.

In programmable mode the TONE_LENGTH register sets the number of tones to generate. Tones have a duration of TONE_ON_TIME and are spaced TONE_OFF_TIME apart. To generate a single tone of longer than 255ms the TONE_OFF_TIME can be set to zero and a tone of TONE_LENGTH*TONE_ON_TIME ms can be generated.

Continuous mode is entered by setting TONE_ON_TIME, TONE_OFF_TIME, and TONE_LENGTH all to 0. The user may then set the frequency and level for tones A and/or B, which will then be generated continuously as long as GEN_EN and CLK_EN are set high.

Configuration for the three modes is listed below.

Table 8-12 Tone Generation Mode Setup

Mode TONE_FREQ_A TONE_LEVEL_A TONE_ON_TIME TONE_FREQ_B TONE_LEVEL_B	TONE_OFF_TIME	TONE_LENGTH	INDEX_n
---------------------------------------------------------------------	---------------	-------------	---------

### nuvoTon

Continuous Mode	User defined	User defined	Set : 0	Set : 0	Set : 0	Don't
DTMF Mode	Don't care	User defined	User defined	User defined	Number of digits in tone index registers.	Care Digits to send
Programmable Mode	User defined	User defined	User defined	User defined	Number of tones to generate.	Don't care

#### 8.11.1 TONE_CTRL

Address	3	Access Mode		Access Mode Value At Reset		Nominal	Value		
0x1C0		R/W		0x00			20.4	2	
Bit 7	Bit	6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
CLK_EN	Reser	Reserved Reserved		Reserved	Reserved	Reserved	DTMF_MODE	GEN_EN	

# GEN_EN 1: Start tone generation. 0: Write a zero to stop tone generation. GEN_EN will self-clear after completion of tone generation in DTMF mode or in programmable mode.

DTMF_MODE 1: DTMF mode. 0: Programmable tone mode.

CLK_EN 1: Enable clk. 0: Disable clk. To minimize power consumed by the tone generator, clock should be disabled when not in use.

### 8.11.2 TONE_FREQ_A

Addres	s	Access Mode		Value At Res	et	Nominal Value				
0x1C1-0x	1C2	R/W		0x0000						
Bit7	Bite	t6 Bit5		Bit4		Bit3	Bit2	Bit1	Bit0	
Reserved		TONE_FREQ_A[14:8]								
TONE_FREQ_A[7:0]										

### C1 C2

TONE_FREQ_A Sets the frequency of tone A to TONE_FREQ_A * 2.5 Hz. If set to zero, tone A is disabled. Register is ignored in DTMF mode. Valid range for this register is 0x0000 – 0x0640 (4 kHz).



#### 8.11.3 TONE_FREQ_B

	Address			Access Mode Value At Reset Nominal Value		nal Value					
	0x1C3-0x	IC4		R/W	0x0000						
	Bit7	Bite	Bit6 Bit5		Bit4	Bit3	Bit2	Bit1	Bit0		
C3	Reserved				TOI	NE_FREQ_B[	14:8]	8			
C4	TONE_FREQ_B[7:0]										

TONE_FREQ_B Sets the frequency of tone B to TONE_FREQ_B * 2.5 Hz. If set to zero, tone B is disabled. Register is ignored in DTMF mode. Valid range for this register is 0x0000 – 0x0640 (4 kHz).

#### 8.11.4 TONE_LEVEL_A

Address			ess Mode	Value At Reset	t Nominal	Value				
0x1C5			R/W	0x00				ya s	2	
Bit 7	Bit	6	Bit 5 Bit 4 Bit 3 Bit 2		Bit 2	Bit 1	Bit 0			
	-			TONE_LEV_A						

TONE_LEV_A Sets the level of tone A relative to full scale. Level (dBFS) = (TONE_LEV_A-63)/2

### 8.11.5 TONE_LEVEL_B

Address	3	Access Mode		Value At Reset	t No	minal \	√alue		
0x1C6			R/W 0x00						
Bit 7	Bit	it 6 Bit 5		Bit 4	Bit 3		Bit 2	Bit 1	Bit 0
	-		TONE_LEV_B						

TONE_LEV_A Sets the level of tone A relative to full scale. Level (dBFS) = (TONE_LEV_A-63)/2

#### 8.11.6 TONE_ON_TIME

Address	Address Access Mode		Value At Reset	Nominal	Value						
0x1C7		R/W	0x00								
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
	TONE_ON_TIME										

TONE_ON_TIME Sets the present (on) time of each tone to TONE_ON_TIME * 1ms. Set to zero for continuous mode.



#### 8.11.7 TONE_OFF_TIME

Address	Address Access Mode		ess Mode	Value At Reset	Nominal	Value		
0x1C8		R/W		0x00				
Bit 7	Bit	6 Bit 5		Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
				TONE_O	FF_TIME			

TONE_OFF_TIME It sets the absent (off) time between each tone to TONE_OFF_TIME * 1ms. Set to zero for continuous mode.

#### 8.11.8 TONE_LENGTH

Address	3	Access Mode		Access Mode		Value At Reset	t Nomina	al Value		
0x1C9		R/W		0x00			100	16-2		
Bit 7	Bit 6	Bit 6 Bit 5		Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Reserved	Reserv	/ed	Reserved		TONE_LENGT	Η				

TONE_LENGTH This register determines the number of DTMF digits to be sent in DTMF mode. Digits are stored, two per byte, in the TONE_INDEX_X registers. The maximum number of DTMF digits is 24.

In programmable tone mode, the tone length sets the number of tones to generate, maximum number is 24.

For continuous mode, TONE_LENGTH must be set to 0.

8.11.9





### 8.11.10TONE_INDEX_0 ~ TONE_INDEX_A

	Address 0x1D0-0x1E		ccess Mode R/W	Value At Reset 0x00	Nomina	l Value				
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
D0		Di	git 0			Digi	it 1			
D1		Di	git 2		Digit 3					
D2		Di	git 4			Digi	it 5			
D3		Dig	git 6		Digit 7					
D4		Di	git 8			Digit 9				
D5		Dig	jit 10		Digit 11					
D6		Dig	jit 12		Digit 13					
D7		Dig	jit 14			Digit	: 15			
D8		Dig	jit 16			Digit	: 17			
D9		Dig	jit 18			Digit	: 19			
DA		Dig	jit 20			Digit	: 21	1		
DB		Dig	jit 22			Digit	: 23			

Digit 0 ~ 23 These registers can be loaded with up to 24 DTMF digits. The DTMF generator will send the fall TONE_LENGTH digits in this register bank sequentially. The frequencies generated by each nibble are defined in Table 8-13.

Table 8-13 DTMF Frequency Mapping.

			Column f	requency	
		1209 Hz	1336 Hz	1477 Hz	1633 Hz
	697 Hz	0x01 _{hex}	0x02 _{hex}	0x03 _{hex}	0x0D _{hex}
	007 112	1	2	3	А
Daw	770 Hz	0x04 _{hex}	0x05 _{hex}	0x06 hex	0x0E hex
Row Frequency	110112	4	5	6	В
×5.	852 Hz	0x07 _{hex}	0x08 hex	0x09 _{hex}	0x0F _{hex}
Ar O.	052 112	7	8	9	С
	941 Hz	0x0B _{hex}	0x0A _{hex}	0x0C _{hex}	0x00 _{hex}
a c	<b>31</b> 11 <b>2</b>	*	0	#	D

### 8.12 FSK Generation

### nuvoTon

The ISD61XX provides an FSK generator supporting Bell 202, Bell 103, ITU-T V.23 and ITU-T V.21 standard FSK. The FSK Generator controls the tone generator to generate phase continuous tones at the appropriate frequency and baud rate. The generator can be configured to package bytes with selectable start and stop bits and a parity bit. Alternatively, the user may enable software mode (SW_MODE) and configure mark and space frequencies and baud rate generate arbitrary FSK waveforms.

The block diagram of the FSK generator is shown below. Data to be transmitted is loaded into the 8 deep FIFO. The interface can be configured to generate interrupts to the host when this FIFO is empty or less than half full. The protocol for transmission is selected by the control registers FSKE_CTRL1 and FSK_CTRL2. Bits in these registers allow the user to configure the baud rate, mark and space frequencies, parity bit generation and START and STOP bit generation.

FSK transmission is initiated by asserting FSK_EN bit. The FSK transmit data is clocked serially out of the FIFO one byte at a time beginning with the LSB. If package mode (PACKAGE_EN) is enabled, a 'start bit' (Space) will automatically be added to the head of the FSK transmit data. Furthermore, one or two 'stop bits' (Mark) are added to the end of the FSK transmit data, depending on the setting of STOP_SEL. If package mode is not enabled the FSK transmit data is transmitted as it appears in the FSK FIFO.

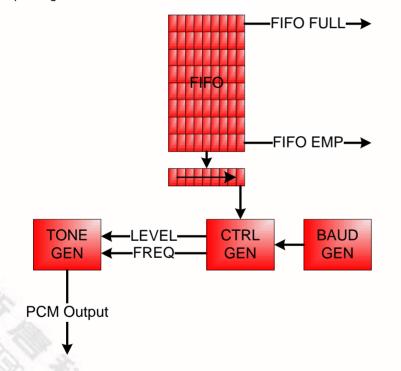



Figure 8-15 Architecture of Linear FSK Waveform Generator

Publication Release Date: March 10, 2011 Revision 2.7

- 77 -



#### 8.12.1 FSKE_CTRL1

Address	Access	Access Mode Value At Rese		t Reset	Nominal Value			
0x160	60 RA		/ 0x00					
Bit 7	Bit 6	Bit 5 Bit 4		Bit 3	Bit 2	Bit 1	Bit 0	
FSK_EN	PACKAGE_EN	ACKAGE_EN HALF_		FSK_TX_C	ON STOP_SEL		RESERVE	D

FSK_EN 1: Enable FSK encoder. 0: Power down FSK encoder.

PACKAGE_EN 1: Package mode. 0: Normal mode. In package mode data byte will be packaged as follows:

- A start bit at SPACE frequency.
- The data byte.
- A parity bit as determined by FSKE_CTRL2
- One or two stop bits at MARK frequency depending on STOP_SEL bit.
- HALF_FIFO_INT Enables interrupt when FIFO depth changes from 5 to 4 (half empty condition). The FIFO also generates an interrupt when FSK_TX_ON is enabled and the FIFO is empty.
- FSK_TX_ON When set FSK Encoder will transmit data from transmit shift register. Also when set encoder will generate an interrupt when FIFO is empty.
- STOP_SEL 1: Two STOP bits generated. 0: One STOP bit generated.

#### 8.12.2 FSKE_CTRL2

Address	s Access Mode		ess Mode	Value At Reset	Nominal	Value		
0x161			R/W	0x23				_
Bit 7	Bit	6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PARITY_EN	PARITY	_TYPE	IIR_EN	RESERVED	BAUD_110	SPEC_SEL		

PARITY_EN	1: Enable parity generation. 0: Disable parity generation.
PARITY_TYPE	1: Even parity. 0: Odd parity.
IIR_EN	Enable IIR filter for FSK power mask specification. (Default on)
BAUD_110	When set generate FSK at 110 baud if Bell 103 selected.
SPEC_SEL	Determines the FSK specification that is generated according to Table 8-14.

Table 8-14 FSK Encoder Specification Selection.

SPEC_SEL	000	001	010	011	100	101	110	111
Spec.	V.23	V.23	Bell 202	Bell 202	Bell 103	Bell 103	V.21	V.21

- 78 -

### nuvoTon

Baud	0	75	1200	150	1200	300 bps	300 bps	200 hpg	200 hpg
Rate	1	bps	bps	bps	bps	110 bps	110 bps	300 bps	300 bps
Mark	( '1'	390Hz	1300Hz	387Hz	1200Hz	1270Hz	2225Hz	980Hz	1650Hz
Space '0'		450Hz	2100Hz	487Hz	2200Hz	1070Hz	2025Hz	1180Hz	1850Hz

#### 8.12.3 FSKE_TX_DATA

Address	s Acc	ess Mode	Value At Reset	Nominal	Value		
0x162		W	0x00		Å	28	
Bit 7	Bit 6	Bit 5	Bit 4 Bit 3		Bit 2	Bit 1	Bit 0
		3	200	~			

FSK_TX_DATA A write to this register pushes the data onto the Tx FIFO.

### 8.12.4 FSKE_STATUS

Address	5	Acc	ess Mode	Value At Reset Nominal Value		Value		
0x163			R	0x00				-07
Bit 7	Bit	6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RESERVED	RESE	RVED	FIFO_EMP	FIFO_FULL		FIFO_	DEPTH	-

FIFO_DEPTH Returns the current number of entries in the Tx FIFO.

FIFO_FULL Set when Tx FIFO is full.

FIFO_EMP Set when Tx FIFO is empty.

#### 8.12.5 FSKE_GAIN

Address	Address Acc		ess Mode	Value At Reset		Nominal	Value		
0x164			R/W	0x39					
Bit 7	Bit	6	Bit 5	Bit 4		Bit 3	Bit 2	Bit 1	Bit 0
RESERVED	RESE	RVED		FSK_GAIN					

FSK_GAIN

This register controls the gain of the generated FSK waveform relative to full scale. Gain (dBFS) =  $(FSK_GAIN-63)/2.0$  Gain range is 0 to -31.5dBFS

### 8.12.6 FSKE_PROG

Address	Access Mode Va		Value At Reset	Nominal	Value		
0x165	1	R/W	0x00				
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0

### nuvoton

Addres	s	Acc	ess Mode	Value At Reset	Nominal	Value		
SW_MODE	RESERVED		RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	SW_FLT

SW MODE When set, SPEC SEL is ignored and the FSK encoder frequencies and baud rate are controlled by FSKE MARK FREQ, FSKE SPACE FREQ, and FSKE BAUD described below.

1: use software programmable filter coefficients. These coefficients are stored in the CAS/ATD tone detector RAM accessible through registers 0x274~0x275

#### 8.12.7 FSKE_BAUD (SW_MODE = 1)

Address	3	Acc	ess Mode	Value At Reset	Nominal	Nominal Value				
0x166~0x′	168		R/W	0x00000				7	6 2	
Bit 7	Bit	6	Bit 5	Bit 4	Bit 3	Bit 2		Bit 1	Bit 0	
RESERVED	RESE	RVED	RESERVED	RESERVED	RESERVED	RESERVED		BAUD_RAT	E_CNT[17:16]	
				BAUD_RATI	E_CNT[15:8]					
BAUD_RATE_CNT[7:0]										

BAUD_RATE_CNT In SW_MODE these registers determine the baud rate of generated FSK. Each bit is generated for BAUD RATE CNT * 81.38ns. Baud rate = 1/( BAUD_RATE_CNT * 81.38e-9) BAUD RATE CNT = 12,288,000/baud rate

#### 8.12.8 FSKE MARK FREQ (SW MODE = 1)

Address	6	Access Mode		Value At Rese	t	Nominal	Value			
0x169~0x1	16A		R/W	0x00						
Bit 7	Bit	Bit 6 Bit 5		Bit 4		Bit 3 Bit		2	Bit 1	Bit 0
RESERVED		MARK_FREQ[14:8]								
	MARK_FREQ[7:0]									

MARK_FREQ In SW_MODE these registers determine the mark frequency of the generated FSK. Frequency is given by MARK_FREQ * 2.5Hz. NU LOIO

SW_FLT This register controls the specification for the filter controlled by IIR_EN (0x23.5) 0: use built in filter coefficients.



#### 8.12.9 FSKE_SPACE_FREQ (SW_MODE = 1)

Address	6	Acc	ess Mode	Value At Reset	Nominal	Value			
0x16B~0x1	16C		R/W	0x00		100			
Bit 7	Bit 6 Bit 5		Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
RESERVED		SPACE_FREQ[14:8]							
	SPACE_FREQ[7:0]								

SPACE_FREQ In SW_MODE these registers determine the space frequency of the generated FSK. Frequency is given by SPACE_FREQ * 2.5Hz.

#### 8.12.10 FSKE_TEST

Address	6	Acc	Access Mode Value A		Nominal	Value			
0x16D			R/W	0x00				NG.	R.
Bit 7	Bit	6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	1
RESERVED	RESE	RVED	RESERVED	RESERVED	AUTO_GEN	RESERVED	RESERVED	RESERVED	5

AUTO_GEN Setting AUTO_GEN will implicitly set FSK_EN, FSK_TX_ON, PACKAGE_EN, and STOP_SEL. The FSK_FIFO will be fed random data generated by LFSR.

8.12.11

{

#### 8.12.12 Example FSK Generator Usage

Below is an example of an interrupt service state machine to service the FSK generation interrupt. The general configuration of the encoder and path is assumed to be setup and a 10ms timer tick interrupt also enabled. The routine will send out carrier synchronization signal along with data loaded into a transmit FIFO.

PUBLIC void vFSKGenFSM(void)

static byte byCounter; byte i, tmp;

### nuvoTon

{

byte bNumChanSeizeBytes = NUM SEIZE;

```
byte bNumMarkBytes = NUM MARK;
switch (byFSKGenState)
       case FSKG IDLE:
       if (bUsbCtrl[0] & USB CTRL0 FSK GEN START)
               byFSKGenState = FSKG CHANNEL SEIZURE;
        l
       break;
       case FSKG CHANNEL SEIZURE:
       // The assumption here is that the FSK encoder block
       // general configuration has been setup already now
       // we just turn off package mode and send channel seizure
        // signal.
        tmp = ReadRegister(CFG FSKE CTRL1);
        tmp &= ~CFG FSKE CTRL1 PACKAGE EN;
        tmp |= CFG_FSKE_CTRL1_FSK_TX_ON | CFG_FSKE_CTRL1_FSK_EN
|CFG_FSKE_CTRL1_HALF_FIFO_INT;
       writeCfgReg(CFG_FSKE_CTRL1,tmp);
       tmp = ReadRegister(CFG FSKE CTRL2);
        tmp &= ~CFG FSKE CTRL2 PARITY EN;
       writeCfgReg(CFG FSKE CTRL2,tmp);
       if (bNumChanSeizeBytes > 8)
        {
               // Load first 8 bytes into FSK FIFO
               for (i=0;i<8;i++)
               {
                       writeCfgReg(CFG FSKE FIFO W,0x55);
               byFSKGenState = FSKG CHANNEL SEIZURE2;
               bNumChanSeizeBytes -=8;
        }
       else if(bNumChanSeizeBytes != 0)
        {
        // Load bytes into FSK FIFO
               for (i=0;i< bNumChanSeizeBytes;i++)</pre>
                {
                       writeCfgReg(CFG FSKE FIFO W,0x55);
               }
               byFSKGenState = FSKG CARRIER GEN;
               bNumChanSeizeBytes = 0;
                // No Channel Seizure. Add MARK and go to carrier gen.
               writeCfgReg(CFG FSKE FIFO W, 0xFF);
               byFSKGenState = FSKG CARRIER GEN;
```

Publication Release Date: March 10, 2011 Revision 2.7

### nuvoton

```
byCounter = 0;
break;
case FSKG CHANNEL SEIZURE2:
if(DevStatus[2] & STATUS2 FSK E)
{
        // We get here FIFO interrupt has occurred. There is space for
        // at least 4 bytes (half interrupt set)
        if(bNumChanSeizeBytes > 3)
        {
        // Load 4 bytes into FSK FIFO
               for (i=0;i<4;i++)
                {
                       writeCfgReg(CFG FSKE FIFO W,0x55);
                }
               byFSKGenState = FSKG CHANNEL SEIZURE2;
               bNumChanSeizeBytes -=4;
        }
        else
        {
        // Load bytes into FSK FIFO
               for (i=0;i< bNumChanSeizeBytes;i++)</pre>
                {
                       writeCfgReg(CFG FSKE FIFO W,0x55);
                }
               writeCfgReg(CFG FSKE FIFO W, 0xFF);
               byFSKGenState = FSKG CARRIER GEN;
               bNumChanSeizeBytes = 0;
        1
}
break;
case FSKG CARRIER GEN:
// Getting here means we have finished loading sych signal
\ensuremath{//} but does not mean that FIFO is empty. Next we need to wait
// a certain number of ms before sending first data. This can be
// achieved by sending 0xFF.
if(DevStatus[2] & STATUS2 FSK E)
{
        // We get here FIFO interrupt has occurred. There is space for
        // at least 4 bytes (half interrupt set)
        if(bNumMarkBytes > 3)
        {
        // Load 4 bytes into FSK FIFO
                for (i=0;i<4;i++)</pre>
                {
                       writeCfgReg(CFG FSKE FIFO W, 0xFF);
                }
                byFSKGenState = FSKG CARRIER GEN;
               bNumMarkBytes -=4;
```

```
nuvoTon
```

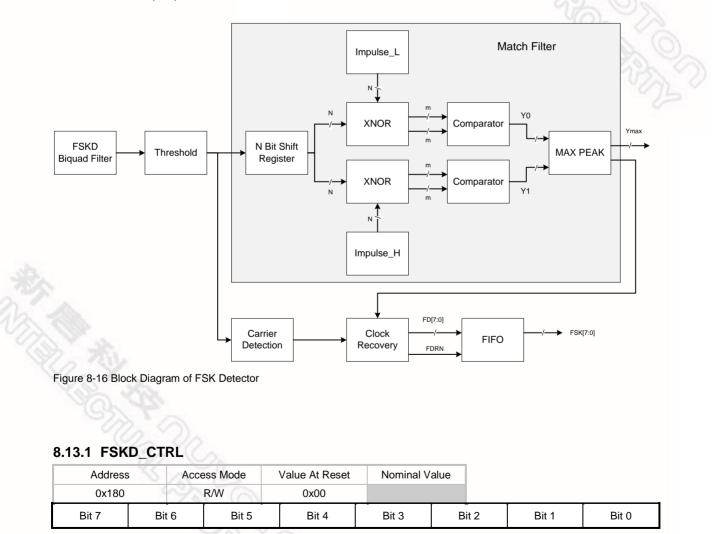
```
// Load bytes into FSK FIFO
                               for (i=0;i< bNumMarkBytes;i++)</pre>
                               {
                                       writeCfgReg(CFG FSKE FIFO W, 0xFF);
                               writeCfgReg(CFG FSKE FIFO W, 0xFF);
                               // Ensure that next INT is for FIFO empty
                               tmp = ReadRegister(CFG FSKE CTRL1);
                               tmp &= ~CFG FSKE CTRL1 HALF FIFO INT;
                               writeCfgReg(CFG FSKE CTRL1,tmp);
                               byCounter = 0;
                               byFSKGenState = FSKG DATA CONFIG;
                               bNumMarkBytes = 0;
                1
               break;
               case FSKG DATA CONFIG:
               if(DevStatus[2] & STATUS2 FSK E)
               {
               // Carrier phase finished set up data transfer.
                       tmp = ReadRegister(CFG FSKE CTRL1);
tmp |= CFG_FSKE_CTRL1__PACKAGE_EN | CFG_FSKE_CTRL1__FSK_TX_ON |
CFG_FSKE_CTRL1__FSK_EN | CFG_FSKE_CTRL1__HALF_FIFO_INT;
                       writeCfgReg(CFG FSKE CTRL1,tmp);
                       tmp = ReadRegister(CFG FSKE CTRL2);
                       tmp |= CFG FSKE CTRL2 PARITY EN;
                       writeCfgReg(CFG FSKE CTRL2,tmp);
                       if(TxDataFifo.Depth >= 8)
                        {
                               // Load the first 8 samples
                               for (i=0;i<8;i++)
        writeCfgReg(CFG FSKE FIFO W,TxDataFifo.Fifo Buffer[(TxDataFifo.ReadIndex++ & 0x3F)]);
                               }
                               TxDataFifo.Depth -= 8;
                       byFSKGenState = FSKG DATA TX;
                }
               break;
                case FSKG DATA TX:
                if((DevStatus[2] & STATUS2 FSK E) || (DevStatus[3] & STATUS3 TIMER INT))
                       // Get here either for a FIFO int or TIMER interrupt.
                       // Find amount of space on FIFO
                       tmp = 8 - (ReadRegister(CFG FSKE STATUS) & 0x0F);
                        if(TxDataFifo.Depth >= tmp)
                               // There are tmp available bytes to transmit
                                                                 Publication Release Date: March 10, 2011
```

Revision 2.7

```
for (i=0;i<tmp;i++)</pre>
                        {
writeCfgReg(CFG_FSKE_FIFO_W,TxDataFifo.Fifo_Buffer[(TxDataFifo.ReadIndex++ & 0x3F)]);
                        TxDataFifo.Depth -= tmp;
                }
                else if(TxDataFifo.Depth)
                {
                        // There are more bytes to \ensuremath{\mathsf{Tx}}
                        for (i=0;i<TxDataFifo.Depth;i++)</pre>
writeCfgReg(CFG FSKE FIFO W,TxDataFifo.Fifo Buffer[(TxDataFifo.ReadIndex++ & 0x3F)]);
                        }
                        TxDataFifo.Depth -= TxDataFifo.Depth;
                }
                else
                {
                        // Only get to here if TxDataFIFO is empty. Check for EOT
                       // condition which is USB CTRLO FSK GEN START set low. If so
                        // and FSK FIFO is empty we can end transmission.
                       if(((bUsbCtrl[0] & USB CTRL0 FSK GEN START)==0)
                                && (tmp == 8))
                        {
                                tmp = ReadRegister(CFG FSKE CTRL1);
                                tmp &= ~(CFG FSKE CTRL1 FSK TX ON |CFG FSKE CTRL1 FSK EN);
                                writeCfgReg(CFG FSKE CTRL1,tmp);
                                byFSKGenState = FSKG IDLE;
                        }
                }
        }
       break;
        default:
       byFSKGenState = FSKG IDLE;
        break;
```

### 8.13 FSK Detection

nuvoTon


The ISD61XX has an FSK Detector supporting Bell 202, Bell 103, ITU-T V.21 and ITU-T V.23 standard FSK. The detector is capable of operating at baud rates of 75, 110, 150, 300, and 1200bps. The architecture of the FSK detection system is shown in Figure 8-16 Block Diagram of FSK Detector

### ηυνοτοη

.The system consists of filtering the incoming signal followed by a match filter to extract FSK data. Additional blocks perform carrier detection and clock recovery to synchronize the data and load it into a FIFO for host processing. The match filter consists of a shift register sampling the signal at 48kHz. This sampled waveform is compared to the matching templates impulse_L and impulse_H for the mark and space frequencies each sample period. A peak detector determines which of the frequencies is present and outputs the result.

8-bit FSK data is packaged along with optional START, STOP and PARITY bits. The expected format of the data is configurable. Transmission of a '1' bit is called a MARK, transmission of a '0' bit is called a SPACE. MARK and SPACE frequencies are determined by the FSK standard configured. The 8-bit data is transmitted LSB first.

The match filter calculates a matching score for the SPACE (Y0) and MARK (Y1) for each sample period. The score is determined by rotating the pattern template against the input signal (FSK_IN) and counting the number of matches to the template giving a score between 0 (no matching bits) and N (maximal matching bits). To improve detection accuracy and noise immunity, the detection can be performed over multiple samples. This is controlled by the FSKD_JUDGE register where detection can operate between one and ten sample periods.



Publication Release Date: March 10, 2011 Revision 2.7

### nuvoTon

									_		
Address	;	Acce	ss Mode	١	Value At Reset		Nominal \	/alue			
FSK_EN	CDB_D	ET_MD	MARK_DE	Т	RESERVED	RE	SERVED	RES	ERVED	RESERVED	FSK_INT_MD
<ul> <li>FSK_INT_MD</li> <li>1: The FSK interrupt will only occur when a 0x55 or 0xAA byte is detected; this mode is used for detecting channel seizure signal.</li> <li>0: The FSK interrupt will occur normally; this mode is used for receiving data transmission The FSK interrupt will occur based on the FIFO_LEN parameter of register FSKD_FIFO_CTRL. The interrupt will not occur again until FSKD_FIFO_DOUT register is read.</li> </ul>											
MARK_DET	Г	0: Normal operation. 1: For type II CID only when FSK session does not contain channel seizure. Causes carrier detection to only look for MARK signal when in Bell 202 or V.23 mode.									
CDB_DET_	MD	0: Type 1 FSK detect. Channel seizure will be detected for CDB. 1: Type 2 FSK detect. Mark and space frequency will be detected for CDB.									
FSK_EN		1: Enable FSK detection block. 0: FSK detection block powered down.									

Two types of FSK sessions are common. Type 1 session begins with a channel seizure phase where alternate mark and space signals are transmitted to allow channel synchronization. Type 2 FSK has no channel seizure phase but rather begins with long MARK signal. To trigger operation of the FSK detector, the circuit first determines whether an FSK carrier is present. This is reflected by the CDB (carrier detect bar) bit in FSKD_STATUS. Once a carrier is detected the FSK demodulator is enabled and data is decoded. The carrier detect condition is determined by the following table:

CDB_DET_MD	MARK_DET	Bell103, V.21	Bell202,V.23
0	0	Detect FSK channel seizure and in- band mark or space frequency. Use for Type 1 FSK.	Detect FSK channel seizure and in-band energy level. Use for Type 1 FSK.
1	0	Detect FSK in-band mark or space frequency. [†] Use for Type 2 FSK.	Detect FSK in-band mark or space frequency. [†] Use for Type 2 FSK.
1	1	Detect FSK in-band mark or space frequency. [‡] Use for Type 2 FSK	Detect FSK in-band mark frequency only.

For Bell202 and V.23, circuit will judge in-band energy level specified by FSKD_ENERGY_HIGH_TH (0x18C) and FSKD_ENERGY_LOW_TH (0x18D) registers for the CDB on and off condition.

[†] When FSK doesn't contain channel seizure and starts with long mark, This mode only detect in-band mark and space frequency, software should check FSKD_STATUS (0x183) register FSK_DF_OUT bit for determining mark duration.

[‡] When FSK doesn't contain channel seizure and starts with long mark, This mode only detect in-band mark and space frequency, software should check FSKD_STATUS (0x183) register FSK_DF_OUT bit for determining mark duration.

### nuvoTon

#### 8.13.2 FSKD_MODE

Address	;	Acce	ess Mode	Value At Reset	Nominal V	alue		
0x181			R/W	0x04				
Bit 7	Bit	t 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Reserved	Rese	erved	PARITY_EN	PARITY_TYPE		MOD	E[3:0]	

PARITY_EN When set decoder expects a parity bit in the received data following the 8 data bits. Parity error status is reported in bit 3 of FSKD_FIFO_STATUS (0x18B).

PARITY_TYPE 1: even parity, 0: odd parity

MODE[3:0] Selects the mode of FSK detection. Valid mode settings are shown in Table 8-15.

_							CA 23 - 1	C. J. I. P. C.	-
FSKMode[3:0]	0111	0110	0101	0100	0011	0010	0001	0000	
Spec.	V.21	V.21	Bell 103	Bell 103	Bell 202		V.23		
Baud Rate	300 bps	300 bps	300 bps	300 bps	1200 bps		1200 bps		2
Mark '1'	1650	980Hz	2225Hz	1270Hz	1200Hz		1300Hz		3
Space '0'	1850	1180Hz	2025Hz	1070Hz	2200Hz		2100Hz		

FSKMode[3:0]	1111	1110	1101	1100	1011	1010	1001	1000
Spec.	Bell 103							
Baud Rate	75 bps	75 bps	110 bps	110 bps	150 bps	150 bps		
Mark '1'	2225Hz	1270Hz	2225Hz	1270Hz	2225Hz	1270Hz		
Space '0'	2025Hz	1070Hz	2025Hz	1070Hz	2025Hz	1070Hz		

Table 8-15 FSK Detector Modes.

#### 8.13.3 FSKD_ADJUST

Address	s Acce	ess Mode	Value At Reset	Nominal Va	alue		
0x182	144	R/W	0xC0				
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DEC_MD_SEL	SYM_ADJ_MD	CF_ADJ_SW	RESERVED	CORR_ADJ_S		CORR_ADJ[2:0]	]

CORR_ADJ[2:0]* Match filter space frequency correlation adjust value.

* CORR_ADJ_S and CORR_ADJ[2:0] are used to micro tune internal match filter space correlation value. This is used to compensate systematic mark and space frequency imbalance due to line interface circuit. The space match score is original score +

### nuvoTon

$CORR_ADJ_S^{*}$	Match filter space frequency correlation adjust value polarity. 0: increase space correlation. 1: decrease space correlation.
CF_ADJ_SW	Carrier frequency detect count for software mode. When set the default carrier detect frequency values are over-ridden and CDB_FREQ_LOW_CNT (0x190-0x191) CDB_FREQ_HIGH_CNT (0x192-0x193) registers are used to determine CDB frequency detection. When reset default values are used.
SYM_ADJ_MD [*]	This bit is valid only when DEC_MD_SEL=1. 0: Symbol adjustment from first start bit. Only supports type 1 FSK signal.
	1: Symbol adjustment applies to every start bit. Supports type 1 and type 2 FSK signal. (Default)
DEC_MD_SEL [*]	0: Data demodulation is triggered on START bit transition and local baud rate clock is used to decode symbol.
	1: Data demodulation is triggered on START bit transition and micro adjustment is performed in symbol. (Default)

#### 8.13.4 FSKD_STATUS

Address	s A	ccess Mode	Value At Reset Nominal V		alue			
0x183		R	0x02				02	5
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	-
RESERVED	RESERVE	D RESERVE	D RESERVED	RESERVED	RESERVED	CDB	FSK_DF_OUT	

FSK_DF_OUT This bit is serial FSK data demodulated by hardware.

CDB Carrier Detect status. 1: No carrier present. 0: Carrier detected.

#### 8.13.5 FSKD_THRES

8.	Address	5	Access Mode	Value At Reset		Nominal Value			
2	0x184-0x1	85	R/W	0x0080					
1	Bit7	Bite	5 Bit5	Bit4		Bit3	Bit2	Bit1	Bit0
84	FSKD_THRES[15:8]								
85	FSKD_THRES[7:0]								

FSKD_THRES[15:0]

Sets the threshold of sensitivity for FSK signal detection. The peak level of input signal must be greater than threshold for valid detection. The threshold is given by FSKD_THRES/2¹⁹*V_{pp}FS, where V_{pp}FS is the full

((-1)^(CORR_ADJ_S))*CORR_ADJ[2:0]. This will affect the decoded mark and space duration in the demodulated data. If space correlation matching score is increased, the 0 duration will be longer. Use of this mode is generally not necessary. It is used to compensate for system level imperfection if twist requirements can not be met with default values.

^{*} It is recommended that SYM_ADJ_MD and DEC_MD_SEL remain at default values (1,1).



scale input peak-to-peak voltage at the ADC which is Avdd V. To refer to input voltage, adjust for the TI input gain.

#### 8.13.6 FSKD_JUDGE

Address	Access	Mode	Value At Reset	Nominal Val	ue		
0x0186	R/	V	0x04				
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Reserved	Reserved	Reserved	Reserved	Reserved	FS	K_CMP_CNT[2	2:0]

FSK_CMP_CNT[2:0] Determines how many sample periods to examine to calculate the maximal match value.

Table 8-16 FSK_CMP_CNT Definition.

FSK_ CMP_CNT [2:0]	Polynomial
0x00	Y(n)
0x01	Max{ Y(n), Y(n-1) }
0x02	$\max\{Y(n),Y(n-1),,Y(n-3)\}$
0x03	$\max\{Y(n),Y(n-1),,Y(n-4)\}$
0x04	max{ Y(n),Y(n-1),,Y(n-5) }
0x05	$\max{Y(n),Y(n-1),,Y(n-6)}$
0x06	max{ Y(n),Y(n-1),,Y(n-7) }
0x07	$\max\{Y(n), Y(n-1), \dots, Y(n-9)\}$

#### 8.13.7 FSKD_SYNC

Address	;	Acce	ess Mode	Value At Reset	Nominal V	alue		
0x187			R/W	0x02				
Bit 7	Bi	t 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Reserved	Reserved		Reserved	Reserved		SYNC_N	NUM[3:0]	-

SYNC_NUM[3:0] Determines how many synchronization patterns (0x55) should be detected before CDB (Carrier Detect Bar) goes low.

### 8.13.8 FSKD_CDET

Address	Acc	cess Mode	Value At Reset	Nominal V	alue		
0x188		R/W	0x03				
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Reserved	Reserved			CDB_TI	ME[5:0]		

- 90 -

nuvoTon

CDB_TIME[5:0] Determines the time before CDB (Carrier Detect Bar) goes low. Time is given by 8*CDB_TIME ms.

#### **Carrier Detection**

The carrier detection block determines whether there is an FSK carrier present on the input signal. The circuit examines an 8ms time slice and determines whether a carrier is present. CDB (Carrier Detect Bar) will go low under either of the following situations:

- 1. Carrier is detected for CDB_TIME*8ms.
- 2. SYNC_NUM synchronization bytes are detected.

### Trecover

The Trecover block detects STOP-START bit transitions and generates bit and FIFO clocks to recover the transmitted data.

FSK_DF_out	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		→ stop start 06 b7 1 0 b0
SDout	b0 b1 b2 b3 b4 b5 b6 b7	b0 b1 b2 b3 b4 b5 b	06 b7 b0
DCLK			
FDRN		<b>`</b>	
FD[7:0]	Q	1st data	2nd data
	t=1/(24 DCLK=	100Hz) =1200Hz	

### 8.13.9 FSKD_FIFO_CTRL

	Address	;	Acce	ess Mode	١	Value At Reset	Nominal V	alue			
1	0x189	R/W		R/W		0x00					
2	Bit 7	Bit	Bit 6 Bit 5			Bit 4	Bit 3	В	it 2	Bit 1	Bit 0
	RESERVED		FIFO_LE				RESERVED	RESE	RVED	RESERVED	CLEAR

CLEAR Setting this bit resets the FSK receive FIFO.

FIFO_LEN Set FIFO interrupt length. Circuit will issue interrupt when (FIFO_LEN+1) samples are present in the FIFO.



#### 8.13.10 FSKD_FIFO_DOUT

Address	Access	Mode	Value	At Reset	Nominal Value					
0x18A	R		0x00							
Bit 7	Bit 6	Bit 6 Bit 5 Bit 4		Bit 3	Bit 2	Bit 1	Bit 0			
	FSKD_FIFO_DOUT									

FSKD_FIFO_DOUT Received data stored in FIFO. The FIFO depth is 8 bytes. If FIFO is not read after a FIFO FULL condition then next data received will be lost. Reading FSKD_FIFO_DOUT resets the FSKD interrupt.

#### 8.13.11 FSKD_FIFO_STATUS

Address	;	Acce	ess Mode	Value At Reset	Nominal V	alue				
0x18B			R	0x01				202 (		
Bit 7	Bi	t 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	200	
	FIFO_DEPTH				PARITY_ERR	OVF	FULL	EMPTY	20	

EMPTY	FIFO empty status. Set when	FIFO is empty. Reset when	FIFO is not empty.

FULL FIFO full status. Set when FIFO is full.

- OVF FIFO overflow status bit. Set when FIFO is full and data has been lost. Reset when FIFO is empty.
- PARITY_ERR The parity error status bit belongs to the current FIFO data. If set then current head of FIFO has a parity error.
- FIFO_DEPTH FSK FIFO depth. This is the current number of samples in the FSK receive FIFO. Value lies in range 0 to 8.

#### 8.13.12 FSKD_ENERGY_HIGH_TH

Address	A A	ccess Mode	Value At Rese	et Nomii	nal Value						
0x18C		R/W	0x0C								
Bit7	Bit6	Bit5 Bit		Bit3	Bit2	Bit1	Bit0				
FSKD_ENERGY_HIGH_TH[7:0]											

FSKD_ENERGY_HIGH_TH[7:0]

Used for Bell 202, V.23 type1 standard. Sets the FSK carrier on energy high threshold. Detector will enter carrier on condition when FSK signal power is over this level for 3*FSKD_ENERGY_TC*1/16K seconds. For default FSKD_ENERGY_TC = 64 this is 12ms.



#### 8.13.13 FSKD_ENERGY_LOW_TH

Address	5	Ac	cess Mode	Value At Reset	Nomin	al Value		
0x18D		R/W		0x06				
Bit7	Bit6	5 Bit5		Bit4	Bit3	Bit2	Bit1	Bit0
FSKD_ENERGY_LOW_TH[7:0]								

FSKD_ENERGY_LOW_TH[7:0]

I] Used for Bell202, V.23 type1 standard. Sets the FSK carrier off energy low threshold. Detector will enter carrier off condition when FSK signal power is under this level for 2*FSKD_ENERGY_TC*1/16K seconds. For default FSKD_ENERGY_TC = 64 this is 8ms.

#### 8.13.14 FSKD_ENERGY_TC

Addres	5	Ac	cess Mode	Value At Rese	et	Nomin	al Value		
0x18E		R/W		0x40					42
Bit7	Bit6		Bit5	Bit4		Bit3	Bit2	Bit1	Bit0
	FSKD_ENERGY_TC[7:0]								

FSKD_ENERGY_TC[7:0] Used for bell202, v.23 type1 standard. Sets the FSK carrier energy accumulate period. The period = FSKD_ENERGY_TC * 1/16K seconds.

8.13.15

Address	3	Access Mode	Value At Res	et	t Nominal Valu			
0x190~0x	191	R/W	0x2F14					
Bit7	Bit6	Bit5	Bit4	]	Bit3	Bit2	Bit1	Bit
0.18		FS	SKD_CDB_FREG		V_CNT[1	5:8]	•	

FSKD_CDB_FREQ_LOW_CNT

CDB low frequency detect count. Valid only when CF_ADJ_SW (0x182) is 1.

Publication Release Date: March 10, 2011 Revision 2.7



#### 8.13.17 FSKD CDB FREQ HIGH CNT

	Addres	8	Ac	ccess Mode	Value At Rese	et N	ominal Value		
	0x192~0x	193		R/W	0x23F5				
	Bit7 Bit6		6 Bit5		Bit4 Bit3		Bit2	Bit1	Bit0
92				FS	KD_CDB_FREG	2_HIGH_C	NT[15:8]	2	
93				F	SKD_CDB_FRE	Q_HIGH_C	CNT[7:0]	X	

CDB high frequency detect count. Valid only when CF ADJ SW FSKD CDB FREQ HIGH CNT (0x182) is 1.

The formula for CDB_FREQ_CNT is:

12288000

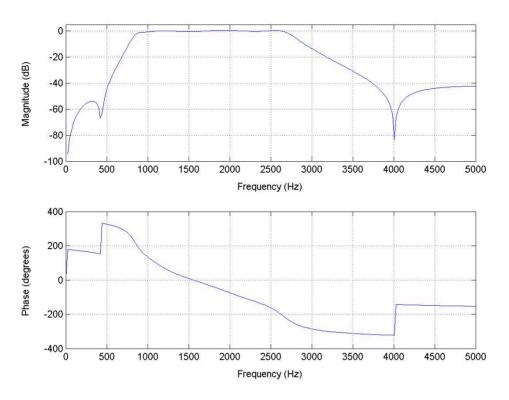
 $CDB \ FERQ \ CNT =$ *FREO*(1+*deviation*%)

For example: Bell103 low band space frequency=1070Hz, deviation=-5%,

CDB FREQ CNT=12288000/(1070*(1-5%))  $\approx$  12088(dec) = 2F38(hex)

Note: These two counts should be carefully set, or CDB detection will not work correctly. Normally, 5% deviation is suitable. If CDB is hard to detect, loosening these two count values will make CDB detection more sensitive but less accurate.

#### 8.13.18 FSKD_LIMIT_TH


Addres	ddress Access Mode		cess Mode	Value At Reset		Nominal Value			
0x194			R/W	0xFF					
Bit7	Bite	5	Bit5	Bit4		Bit3 Bit2		Bit1	Bit0
FSKD_LIMIT_TH[7:0]									

FSKD_LIMIT_TH[7:0]*

Apply a clamp limiter to FSK signal. Input signal will be clamped to the region specified by this value. It is recommended to leave this at default value (no clamping).

 *  The clamp region is: { _{FSKD_LIMIT_TH[7:0],10'b0} , (-1)* {FSKD_LIMIT_TH[7:0],10'b0} }. For example: FSKD_LIMIT_TH=0xFF, the clamp region is {18'h3FC00, (-1)*18'h3FC00 }

nuvoton





#### 8.13.19 Example FSK Detector Usage

Usage of the FSK detector normally involves three steps:

- 1. Configure the detector.
- 2. Detect channel seizure.
- 3. Receive transmitted data.

// Configure Input path: Enable a TI input and set input gain. writeCfgReg(CFG_TI_GAIN,0x0a); writeCfgReg(CFG_TI_CTRL,0x82); // Enable Line CODEC writeCfgReg(CFG_LC_EN,0xa0); // Enable FSK Detector writeCfgReg(CFG_FSKD_CTRL,0x80); // Set mode to Bell 103 1270/1070Hz writeCfgReg(CFG_FSKD_MODE,0x04); // Clear FIFO set interrupt level to 1 byte. writeCfgReg(CFG_FSKD_FIFO_CTRL,0x01); // Adjust thresholds if desired, for example: writeCfgReg(CFG_FSKD_ENERGY_HI_TH,0x0C);



writeCfgReg(CFG_FSKD_ENERGY_TC,0x40);

Below is the Evaluation board interrupt service routine for reference. When triggered the state machine looks for a carrier synchronization signal then receives data to a FIFO. A 10ms timer tick is assumed in operation and correct path and specification configuration.

```
PUBLIC void vFSKDetFSM(void)
{
       static byte byCounter;
       byte tmp;
       switch(byFSKDetState)
       {
               case FSKD IDLE:
               if (bUsbCtrl[0] & USB CTRL0 FSK DET START)
                      byFSKDetState = FSKD CHANNEL SEIZURE;
               }
               break;
               case FSKD CHANNEL SEIZURE:
               // The assumption here is that the FSK encoder block
               // general configuration has been setup already.
               // Here we configure for carrier detection.
               tmp = ReadRegister(CFG FSKD CTRL);
               tmp |= CFG FSKD CTRL FSK INT MD | CFG FSKD CTRL FSK EN;
               writeCfgReg(CFG FSKD CTRL,tmp);
               // Clear FIFO and set interrupt to 6 bytes.
               writeCfgReg(CFG FSKD FIFO CTRL,CFG FSKD FIFO CTRL CLEAR + 0x30);
               byCounter = 0;
               bUsbStatus[4] |= USB STATUS4 FSK WAIT;
               byFSKDetState = FSKD CHANNEL SEIZURE2;
               break;
               case FSKD CHANNEL SEIZURE2:
               if(DevStatus[2] & STATUS2 FSK D)
               {
                      // We get here FIFO interrupt has occurred.
                      // We are in SYNC mode so just clear the FIFO
                      tmp = ReadRegister(CFG FSKD FIFO DOUT);
                      writeCfgReg(CFG FSKD FIFO CTRL,CFG FSKD FIFO CTRL CLEAR + 0x30);
                      byCounter = 0;
                      // Ensure that carrier detect has triggered
                      tmp = ReadRegister(CFG FSKD STATUS);
                       if(!(tmp & CFG FSKD STATUS CDB))
                              bUsbStatus[4] |= USB STATUS4 FSK DETECTED;
                              bUsbStatus[4] &= ~USB STATUS4 FSK WAIT;
                              // FSK INT MD interrupt only occurs once.
```

nuvoTon

```
else if((DevStatus[3] & STATUS3 TIMER INT) && (bUsbStatus[4] &
USB STATUS4 FSK DETECTED))
               {
                      // Timer interrupt has occurred
                      tmp = ReadRegister(CFG FSKD FIFO STATUS);
                      if(!(tmp & CFG FSKD FIFO STATUS EMPTY))
                              // If FIFO is not empty
                              tmp = ReadRegister(CFG FSKD FIFO DOUT);
                              writeCfqReq(CFG FSKD FIFO CTRL, CFG FSKD FIFO CTRL CLEAR + 0x30);
                              byCounter = 0;
                              break;
                      byCounter++;
                      // We wait 50ms without a FIFO interrupt then assume that we have
                      // finished synchronization
                      if(byCounter > 4)
                              byCounter = 0;
                              // Switch to normal interrupt mode
                              tmp = ReadRegister(CFG FSKD CTRL);
                              tmp &= ~CFG FSKD CTRL FSK INT MD;
                              writeCfgReg(CFG FSKD CTRL,tmp);
                              byFSKDetState = FSKD DATA RX;
               }
               break;
               case FSKD DATA RX:
               // Getting here means we are in the data acquisition phase of
               // transmission.
               if (DevStatus [2] & STATUS2 FSK D)
               {
                      // We get here FIFO interrupt has occurred. There are at
                      // least 4 bytes on FIFO.
                      byCounter = 0;
                      tmp = ReadRegister(CFG FSKD FIFO STATUS);
                      while(!(tmp & CFG FSKD FIFO STATUS EMPTY) && (RxDataFifo.Depth <
MAX FIFO SIZE))
                       {
                              if(tmp & (CFG FSKD FIFO STATUS OVF |
CFG FSKD FIFO STATUS PARITY ERR))
                                      // Set a flag here to indicate transmission error.
                                      bUsbStatus[4] |= USB STATUS4 RX ERR;
                              tmp = ReadRegister(CFG_FSKD_FIFO_DOUT);
                              RxDataFifo.Fifo Buffer[RxDataFifo.WriteIndex++ & 0x3F] = tmp;
                              RxDataFifo.Depth++;
                              tmp = ReadRegister(CFG FSKD FIFO STATUS);
```

```
nuvoTon
               else if(DevStatus[3] & STATUS3 TIMER INT)
               {
                      // We are here due to a timer tick. This means we may be finished with
                      // transmission.
                      byCounter++;
                      // We wait 50ms without a FIFO interrupt then we may have
                      // finished data transmission
                      if(byCounter > 4)
                      {
                                     // First read off any data in FIFO
                              tmp = ReadRegister(CFG FSKD FIFO STATUS);
                              while(!(tmp & CFG FSKD FIFO STATUS EMPTY) && (RxDataFifo.Depth <
MAX FIFO SIZE))
                                     if (tmp & (CFG FSKD FIFO STATUS OVF |
CFG FSKD FIFO STATUS PARITY ERR))
                                     // Set a flag here to indicate transmission error.
                                            bUsbStatus[4] |= USB STATUS4 RX ERR;
                                     }
                                     tmp = ReadRegister(CFG FSKD FIFO DOUT);
                                     RxDataFifo.Fifo Buffer[RxDataFifo.WriteIndex++ & 0x3F] = tmp;
                                     RxDataFifo.Depth++;
                                     tmp = ReadRegister(CFG FSKD FIFO STATUS);
                              }
                              if (tmp & CFG FSKD FIFO STATUS EMPTY)
                              // We have an empty FIFO. If we have lost carrier then
                              // we can exit.
                                     tmp = ReadRegister(CFG FSKD STATUS);
                                     if (tmp & CFG FSKD STATUS CDB)
                                     {
                                     // No carrier
                                            byFSKDetState = FSKD WAIT IDLE;
                                     // Report back that Carrier lost
                                            bUsbStatus[4] &= ~USB STATUS4 FSK DETECTED;
                                      }
                              1
               break;
               case FSKD WAIT IDLE:
               if(!(bUsbCtrl[0] & USB CTRL0 FSK DET START))
                      byFSKDetState = FSKD IDLE;
                      bUsbStatus[4] &= ~(USB STATUS4 FSK WAIT | USB STATUS4 RX ERR |
USB STATUS4 FSK DETECTED);
              }
              break;
               default:
              byFSKDetState = FSKD IDLE;
                                                              Publication Release Date: March 10, 2011
                                                 - 98 -
                                                                                       Revision 2.7
```

break;

}

nuvoton

// Setup channel seizure detection
OrCfgReg(CFG_FSKD_CTRL,0x01);
AndCfgReg(CFG_FSKD_MODE,~0x20);

// Wait for INT for carrier detection.

// Read off data from FIFO of channel seizure or wait until channel seizure time has // elapsed then reset FIFO. Channel now transmits STOP (MARK) signal for some period

// Change mode to appropriate packaged mode. AndCfgReg(CFG_FSKD_CTRL,~0x01); OrCfgReg(CFG_FSKD_MODE,0x20); // parity enable

// Service FIFO interrupt until desired data collected or CDB goes high indicating end // of transmission.

### 8.14 CAS and Arbitrary Tone (ATD) Detector

The CAS and Arbitrary tone detector (ATD) allows detection of CAS tones and is configurable to detect arbitrary tones. CAS (CPE Alert Signal) is used to signal the CPE (Customer Premise Equipment) while off hook that the exchange wishes to send some alert signal the end user, such as call waiting. It is used only in off-hook signaling in the US Bellcore system and ETSI system, but in the UK BT system it is used for both on and off-hook signaling. Figure 8-18 shows the architecture of the CAS detector.

nuvoTon

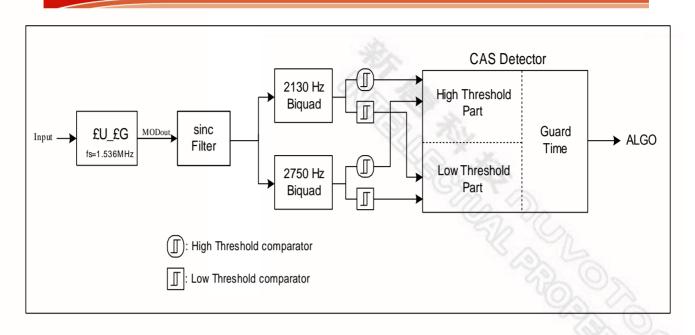



Figure 8-18 Block Diagram of CAS Detection

The CAS detector consists of two biquad bandpass filters to extract the high and low tones of the CAS signal. The characteristics of these two filters are shown Figure 8-19 and Figure 8-20. Their frequency response is:

- High tone (2750Hz) band pass filter:  $2600Hz \le f \le 3000Hz$
- Low tone (2130Hz) band pass filter:  $2020Hz \le f \le 2200Hz$

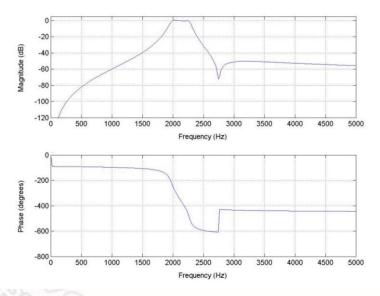



Figure 8-19 Detector Biquad Low Tone Frequency Response

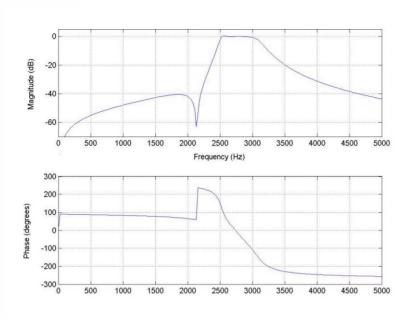



Figure 8-20 CAS Detector Biquad High Tone Frequency Response

nuvoton

The CAS detector can also be programmed as an arbitrary tone detector (ATD). In ATD mode coefficients for the low and high tone biquad filters are provided by the user. The frequency specifications and deviation are also programmed by the user. The ATD can be configured to detect single tonesor dual tones.

8.14.1	CAS_	CTRL
--------	------	------

Address	ress Access Mode		Value At Reset		I	Nominal Value				
0x200			R/W		0x40					
Bit 7	Bit	6	Bit 5		Bit 4		Bit 3	Bit 2	Bit 1	Bit 0
CAS_EN	IIR_	EN	TONE_ON	_INT	TONE_OFF_IN	١T	RESERVED	allow_noise	FRE	Q_DEV

CAS EN 1: CAS Detector enabled. 0: CAS detector powered down. **IIR EN** Enable internal IIR filter. IIR EN must be cleared before accessing filter coefficients in arbitrary tone detection (ATD) mode. The response of the IIR filter in CAS mode is shown Figure 8-21 CAS Internal IIR Filter Frequency Response Figure The response of the filter in ATD mode is determined by the user coefficient loaded into RAM. Once filter coefficients are loaded into RAM IIR_EN must be set active once more. TONE_ON_INT 1: Enable 0: disable interrupt generation for tone present detection. TONE_OFF_INT 1: Enable 0: disable interrupt generation for tone absent detection. allow noise 1: Tolerating noise signal existence. 0: Not tolerating noise signal existence. FREQ_DEV[1:0] Controls the acceptable frequency deviation of CAS detection as per Table 8-17. Not applicable in ATD mode.

### nuvoTon

Table 8-17 CAS Detector Frequency Deviation Control.

FREQ_DEV[1:0]	00	01	10	11
% Dev	2%	1%	2%	3%
High Tone 2750 Hz	2805~2695 Hz	2777~2722 Hz	2805~2695 Hz	2832~2667 Hz
Low Tone 2130 Hz	2176~2087 Hz	2151~2109 Hz	2176~2087 Hz	2193~2066 Hz

#### 8.14.2 CAS_THRES_LOW – CAS detector low threshold

	Address	s	Ac	cess Mode	Value At Res	et	Nominal Value			
	0x201-0x2	202		R/W	0x0000				5	20 6
	Bit7	Bite	5	Bit5	Bit4		Bit3	Bit2	Bit1	Bit0
					CAS_THRES	S_LO	W[15:8]			
ľ					CAS_THRE	S_LO	)W[7:0]			1

01 02

CAS_THRES_LOW[15:0]

Determines the low boundary hysteresis of the CAS/ATD signal detection. The value is in 2's complement 1.15 format. The value 0x7FFF corresponds to full swing input ( $1V_{pp}$  at ADC input). For example: CAS_THRES_LOW = 0x020C => 0000 0010 0000 1100b

 $2^{(-7)} + 2^{(-13)} + 2^{(-14)} \approx 8 \text{mV}_{\text{pp}}$ 

### 8.14.3 CAS_MULT

Address	3	Acc	ess Mode	Value At Reset	Nominal	Value		
0x203			R/W	0x11				
Bit 7	Bit	: 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Reserved	cas_	_src	de	det_rsol		MUL	T[3:0]	

cas_src det_rsol Select the source of cas input. 0: select from sinc filter. 1: select from digital filter.

The resolution of detecting CAS signal

00: 48KHz sampling clock generated by internal counter

01: 48KHz sampling clock generated by internal counter which aligned with detected CAS signal .

10: 64KHz sampling clock generated by internal counter which aligned with detected CAS signal.

11: 96KHz sampling clock generated by internal counter which aligned with detected

### nuvoTon

CAS signal.

MULT [3:0] The CAS/ATD detector processes two thresholds, CAS_THRES_LOW and CAS_THRES_HIGH. CAS_THRES_HIGH is calculated by CAS_THRES_LOW << MULT. For example above and MULT=4

CAS_THRES_HIGH =  $8 \text{ mV}_{pp} * 2^4 = 128 \text{ mV}_{pp}$ 

If (CAS_THRES_LOW << MULT)  $\ge$  0x7FFF, CAS_THRES_HIGH saturates to 0x7FFF.

For a valid detection the peak signal level must fall between CAS_THRES_LOW and CAS_THRES_HIGH.

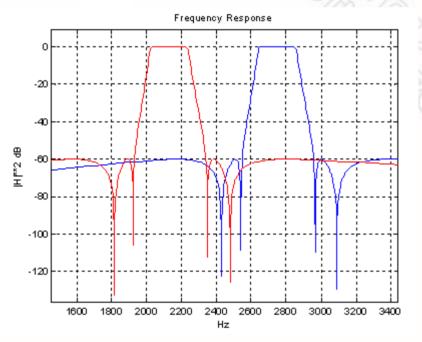



Figure 8-21 CAS Internal IIR Filter Frequency Response Figure

#### 8.14.4 CAS_PRESENT

Addres	Address		cess Mode Value At Re		t Nominal	Value		
0x204			R/W	0x40				
Bit 7	Bit	6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
- CSX	CAS_PRES_TIME							

CAS_PRES_TIME [7:0] This is the time a detected CAS/ATD tone must be present to generate a CAS interrupt. The time equals CAS_PRES_TIME * 0.5ms.



#### 8.14.5 CAS_ABSENT

Address	3	Acc	ess Mode	Value At Reset	Nominal	Value		
0x205			R/W	0x20				
Bit 7	Bit	6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CAS_ABSENT_TIME								

CAS_ABSENT_TIME [7:0] This is the time a detected CAS/ATD tone must be absent before removal of CAS_DET signal. The time equals CAS_ABSENT_TIME * 0.5ms. This parameter is used to mask short drop outs of the CAS signal.

#### 8.14.6 CAS_STATUS

Address	6	Acc	ess Mode	Value At Reset	t Nominal	Value		
0x206			R	0x00			N	6.99
Bit 7	Bit	6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RESERVED	RESE	RVED	RESERVED	RESERVED	RESERVED	RESERVED	CAS_AI	DT_DET

CAS_ADT_DET Indicates what type of tone is detected as per Table 8-18.

Table 8-18 CAS/ADT Detection Bits

CAS_MODE[6:5] (DET_MODE)	CAS_ADT_DET[1]	CAS_ADT_DET[0]
00	Don't Care	Dual Tone Status
01	Don't Care	Low Tone Status
10	Don't Care	High Tone Status
11	High Tone Status	Low Tone Status

#### 8.14.7 CAS_MODE - Arbitrary Tone Detection Mode

Address	s Acc	ess Mode	e Value At Reset Nominal Value		Value		
0x0207	25	R/W	0x10				
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ATD_MODE	DET_MODE				STATS		

ATD_MODE

0: CAS detection mode. 1: Arbitrary Tone Detection (ATD) mode.

In ATD_MODE the detection and filter parameters are programmed by software to detect arbitrary tone.

Publication Release Date: March 10, 2011 Revision 2.7

nuvoton

DET_MODE	10: detect high tone only when AT	00: dual-tone mode 01: detect low tone only when ATD_MODE=1 10: detect high tone only when ATD_MODE=1 11: detect high/low tone separately when ATD_MODE=1							
		e computation time required. The value from 1 to 1E.	ons. The more cycles the higher the his value must be set to 0x01~0x1E ::4]).						
STATS	det_rsol	STATS							
	00	11(h)							
	01	11(h)	Sp Con						
	10 d(h)								
	11	20 O -							

#### 8.14.8 ATD_MAX_HFC (ATD_MODE = 1)

Address	3	Acc	ess Mode	Value At Reset	t Nominal	Value				
0x0208-0x	209		R/W	0x0110					19	
Bit 7	Bit	6	Bit 5	Bit 4	Bit 3	Bit 2		Bit 1	Bit 0	
RESERVED	RESER	RVED	RESERVE	RESERVED	RESERVED	RESER	RVED	ATD_MAX_HFC[9:8]		
ATD_MAX_HFC[7:0]										

This is the maximum frequency count for the high tone arbitrary frequency detector. A tone is detected when the frequency counter falls between ATD_MIN_HFC and ATD_MAX_HCF. The value of this register should be set to:

ATD_MAX_HFC

ATD_MAX_HFC = (SMPL_CLK * STATS) / (Desired_High_Frequency * (1+ error%)), SMPL_CLK is the frequency of sampling clock defined by register det_rsol register.

#### 8.14.9 ATD_MIN_HFC (ATD_MODE = 1)

Address	s /	ccess Mode	Value At Rese	t Nominal	Value		
0x020A-0x	20B	R/W	0x0120				
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RESERVED	RESERVE		RESERVED	RESERVED	RESERVED	ATD_MIN	_HFC[9:8]
ATD_MIN_HFC[7:0]							

ATD_MIN_HFC

This is the minimum frequency count for the high tone arbitrary frequency detector. A tone is detected when the frequency counter falls between ATD_MIN_HFC and ATD_MAX_HCF. The value of this register should be set to:

ATD_MIN_HFC = SMPL_CLK * STATS) / (Desired_High_Frequency * (1- error%)), SMPL_CLK is



the frequency of sampling clock defined by register det_rsol.

### 8.14.10 ATD_MAX_LFC (ATD_MODE = 1)

Address	6	Access Mode		Value At Reset	t Nominal	Nominal Value		
0x020C-0x	20D		R/W	0x0161		лк.		
Bit 7	Bit	Bit 6		Bit 4	Bit 3	Bit 3 Bit 2		Bit 0
RESERVED	RESER	RVED	RESERVED	RESERVED	RESERVED	RESERVED	ATD_MAX	(_LFC[9:8]
ATD_MAX_LFC[7:0]								

This is the maximum frequency count for the low tone arbitrary frequency detector. A tone is detected when the frequency counter falls between ATD_MIN_LFC and ATD_MAX_LCF. The value of this register should be set to:

ATD_MAX_LFC = (SMPL_CLK * STATS) / (Desired_low_tone_Frequency * (1+ error%)), SMPL_CLK is the frequency of sampling clock defined by register det_rsol.

#### 8.14.11 ATD_MIN_LFC (ATD_MODE = 1)

Address	5	Acc	ess Mode	Value At Reset	Nominal	Value				
0x020E-0x	20F		R/W	0x016F						2
Bit 7	Bit	6	Bit 5	Bit 4	Bit 3	Bit 2		Bit 1	Bit 0	
RESERVED	RESE	RVED	RESERVED	RESERVED	RESERVED	RESER	VED	ATD_MIN	_LFC[9:8]	
ATD_MIN_LFC[7:0]								]		

This is the minimum frequency count for the high tone arbitrary frequency detector. A tone is detected when the frequency counter falls between ATD_MIN_HFC and ATD_MAX_HCF. The value of this register should be set to:

ATD_MIN_LFC

ATD_MAX_LFC

ATD_MIN_LFC = (SMPL_CLK * STATS) / (Desired_low_tone_Frequency * (1- error%)), SMPL_CLK is the frequency of sampling clock defined by register det_rsol.

#### 8.14.12 External Dual-IIR Coefficient (ATD_MODE= 1)

Address	s A	ccess Mode	Value At Reset	Nominal	Value			
0x0210~02	241	R/W	0x00					
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
	1.2.1.1		ATD_HF	_COEFF			<u> </u>	

### ηυνοτοη

Address	ess Access Mode Value At Reset Nominal Value		Value					
0x0242~02	273		R/W	0x00				
Bit 7	Bit	6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
				ATD_LF_	COEFF			

ATD_HF_COEFF IIR filter coefficients the high tone arbitrary tone detector.

ATD_LF_COEFF IIR filter coefficients the low tone arbitrary tone detector.

Before accessing these coefficients (both for read or write), 0x0200[6] IIR_EN must be cleared and 0x0200[7] CAS_EN must be set. This allows the internal IIR filter coefficients to be replaced by ones of the user's choice for arbitrary tone detection. Once loaded IIR_EN is set active once more for operation.

The input to the CAS detector consists of two cascaded IIR filters, each of them are **5-order biquad** filters (10-order IIR filter) and operate at a **16kHz** sampling **rate**.

The user must set each biquad filter coefficient according to a specific **order b0 b1 a1 b2 a2 with** respect to the following formula:

### $y(n) = b0^{*}x(n) + b1^{*}x(n-1) + b2^{*}x(n-2) - a1^{*}y(n-1) - a2^{*}y(n-2)$

Each parameter is **16 bits** long in a **3.13 format**, and is stored MSB first. Thus for high tone filter, b0[15:8] is at address 0x210, b0[7:0] is at 0x211, b1[15:8] is at 0x212 etc..

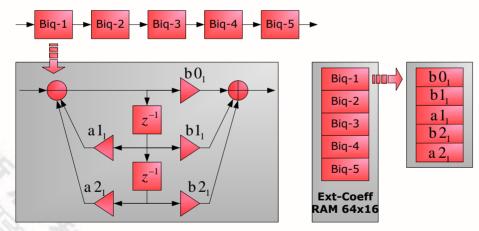



Figure 8-22 FSK ATD IIR filter structure

### 8.14.13 FSK_COEFF – FSK Encoder Coefficient RAM Data

Address		Access Mode	Value At Reset	Nominal	Value		
0x027	4	R/W	0x00				
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
			FSK_CC	DEFF			

The FSK encoder has a built-in 8th-order IIR filter formed by cascading 4 biquad filters. There are total up to 40 bytes to be programmed and the format is the same as CAS/ATD filter.

- 107 -



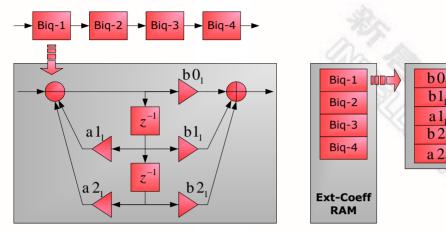



Figure 8-23 FSK encoder IIR filter structure

In order to program this ram, 0x0200[7] CAS_EN must be set, and 0x0200[6] IIR_EN must be clear The parameter is 16 bits long with 3.13 format, and user must write high byte first then low byte. 0x0275[0]=0 is the high byte, and 0x0275[0] =1 is the low byte. The RAM for these filter coefficients is accessed through register FSK_COEFF and addressed through FSK_COEFF_ADDR

When software reads or writes register FSK_COEFF (0x274), the FSK_COEFF_ADDR (0x275) register will automatically increment. When the address reaches 0x27 it will reset to 0x00.

User can program _COEFF_ADDR for choosing specific FSK encoder RAM content both for read and write.

Care must be taken that only 0x0275[0] = 1, the 16-bit coefficient data will be written into ram.

Address	6	Acc	ess Mode	Value At Reset	t	Nominal Value				
0x0275			R/W	0x00						
Bit 7	Bit	6	Bit 5	Bit 4		Bit 3	Bit	2	Bit 1	Bit 0
				FSK_COE	FF_	ADDR				

By setting this address, software can access up to 40 bytes via 0x0274.

### 8.14.15 CAS_MAX_HFC (FINE_TUNE = 1)

Address	Address Acc		ess Mode Value At Reset		Value			
0x276-0x2	277	R/W	0x010E					
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	RESERVE	CAS_MAX	(_HFC[9:8]	
	CAS_MAX_HFC[7:0]							



CAS_MAX_HFC

This is the maximum frequency count for the high tone arbitrary frequency detector. A tone is detected when the frequency counter falls between CAS_MIN_HFC and CAS_MAX_HCF. The value of this register should be set to:

CAS_MAX_HFC = (48000 * 16) / (Desired_High_Frequency * (1+ error%))

### 8.14.16 CAS_MIN_HFC (FINE_TUNE = 1)

Address	6	Acc	ess Mode	Value At Reset	Nominal	Value		
0x278-0x2	0x278-0x279		R/W	0x0121		2	120	
Bit 7	Bit	Bit 6 Bit 5		Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RESERVED	RESER	RVED	RESERVED	RESERVED	RESERVED	RESERVED	CAS_MIN_	_HFC[9:8]
CAS_MIN_HFC[7:0]								

CAS_MIN_HFC

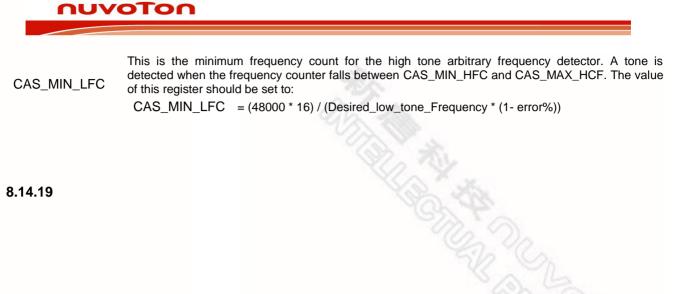
This is the minimum frequency count for the high tone arbitrary frequency detector. A tone is detected when the frequency counter falls between CAS_MIN_HFC and CAS_MAX_HCF. The value of this register should be set to:

CAS_MIN_HFC = (48000 * 16) / (Desired_High_Frequency * (1- error%))

### 8.14.17 CAS_MAX_LFC (FINE_TUNE = 1)

Address	6	Acc	ess Mode	Value At Re	set	Nominal	Value			
0x27A-0x2	0x27A-0x27B		R/W	0x015D						
Bit 7	Bit	Bit 6 Bit 5		Bit 4		Bit 3	Bit	2	Bit 1	Bit 0
RESERVED	SERVED RESERVED RESERV		RESERVE	D RESERVE	D R	RESERVED	RESER	VED	CAS_MAX	(_LFC[9:8]
	CAS_MAX_LFC[7:0]									

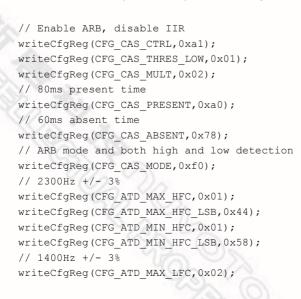
CAS_MAX_LFC


This is the maximum frequency count for the low tone arbitrary frequency detector. A tone is detected when the frequency counter falls between CAS_MIN_LFC and CAS_MAX_LCF. The value of this register should be set to:

CAS_MAX_LFC = (48000 * 16) / (Desired_low_tone_Frequency * (1+ error%))

### 8.14.18 CAS_MIN_LFC (FINE_TUNE = 1)

Address	s Acc	ess Mode	Value At Reset	t Nominal	Value				
0x27C-0x2	27D	R/W	0x0175						
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	CAS_MIN	_LFC[9:8]		
	CAS_MIN_LFC[7:0]								






8.14.20

### 8.14.21 Arbitrary Tone Detector Example

Below is an example to setup the arbitrary tone detector to detect 1400 and 2300Hz tones.



nuvoton

writeCfgReg(CFG ATD MAX LFC LSB, 0x14); writeCfgReg(CFG ATD MIN LFC, 0x02); writeCfgReg(CFG ATD MIN LFC LSB,0x36); // Biquad coefficients for 2300 and 1400Hz writeCfgReg(0x211,0x03); writeCfgReg(0x214,0xd8); writeCfgReg(0x215,0xd8); writeCfgReq(0x216,0xff); writeCfgReq(0x217,0xfc); writeCfgReq(0x218,0x1f); writeCfgReg(0x219,0x39); writeCfgReg(0x21a,0x20); writeCfgReg(0x21c,0xda); writeCfqReq(0x21d,0xf6); writeCfqReq(0x21e,0xd9); writeCfqReq(0x21f,0x61); writeCfgReg(0x222,0x20); writeCfgReg(0x222,0x1f); writeCfgReg(0x223,0x75); writeCfgReg(0x224,0x20); writeCfgReg(0x226,0xd5); writeCfgReg(0x227,0xf7); writeCfqReq(0x228,0xd8); writeCfqReq(0x229,0x08); writeCfqReq(0x22a,0x1f); writeCfgReq(0x22b,0xff); writeCfgReq(0x22c,0x1f); writeCfgReq(0x22d,0x78); writeCfgReg(0x22e,0x20); writeCfgReg(0x230,0xda); writeCfgReg(0x231,0x08); writeCfgReq(0x232,0xd9); writeCfgReq(0x233,0x71); writeCfgReq(0x234,0x1f); writeCfgReq(0x235,0xff); writeCfgReq(0x236,0x1f); writeCfgReq(0x237,0xd5); writeCfgReg(0x238,0x20); writeCfgReg(0x23a,0xd6); writeCfgReg(0x23b,0xc8); writeCfgReg(0x23c,0xd7); writeCfgReg(0x23d,0x85); writeCfgReg(0x23e,0x20); writeCfgReg(0x240,0x1f); writeCfgReg(0x241,0xd6); writeCfgReg(0x243,0x03); writeCfgReg(0x246,0xca); writeCfgReg(0x247,0x14); writeCfgReg(0x248,0xff); writeCfgReq(0x249,0xfc); writeCfgReq(0x24a,0x1f); writeCfgReq(0x24b,0x3a); writeCfgReg(0x24c,0x20); writeCfgReg(0x24e,0xcb); writeCfgReg(0x24f,0x36); writeCfgReg(0x250,0xca); writeCfgReg(0x251,0x56); writeCfgReg(0x252,0x20); writeCfgReg(0x254,0x1f); writeCfgReg(0x255,0x74); writeCfgReg(0x256,0x20); writeCfgReg(0x258,0xc7); writeCfgReg(0x259,0xe5); writeCfgReg(0x25a,0xc9); writeCfgReg(0x25b,0x6e); writeCfgReg(0x25c,0x20); writeCfgReg(0x25e,0x1f); writeCfgReg(0x25f,0x7a); writeCfgReg(0x260,0x20); writeCfgReg(0x262,0xca); writeCfqReq(0x263,0x8d); writeCfqReq(0x264,0xca); writeCfqReq(0x265,0x38); writeCfgReg(0x266,0x20); writeCfgReg(0x268,0x1f); writeCfgReg(0x269,0xd5); writeCfgReq(0x26a,0x20); writeCfgReq(0x26c,0xc8); writeCfgReq(0x26d,0x66); writeCfgReg(0x26e,0xc8); writeCfgReg(0x26f,0xf0); writeCfgReg(0x270,0x1f); writeCfgReq(0x271,0xff); writeCfgReq(0x272,0x1f); writeCfgReq(0x273,0xd7); // Enable ARB, enable IIR

writeCfgReg(CFG CAS CTRL, 0xel);

An example interrupt service routine to use the arbitrary tone detector and DTMF and tone generator to perform a SIA contact ID transmission is given below. It assumes that ARB configuration is done as above.

- 111 -

PUBLIC void vContactIDFSM(void)

static byte byCounter; static XDATA byte retry; byte tmp, i;

switch(byContactIDState)

case CONTID_IDLE: if(bUsbCtrl[0] & USB_CTRL0_CONTID_START) { byCounter = 0; retry =0; byContactIDState = CONTID_HANDSHAKE0; // Set timer to 1 second writeCfgReg(CFG_TIME_CTRL,0x00); writeCfgReg(CFG_TIME_TARG,0x03); writeCfgReg(CFG_TIME_TARG_LSB,0xE7);

### nuvoton

```
writeCfgReg(CFG_TIME_CTRL,0x80);
```

```
}
break;
case CONTID HANDSHAKE0:
// This is first stage of detecting ContactID handshake a
// 1400Hz tone.
if(DevStatus[2] & STATUS2 CAS INT) {
       tmp = ReadRegister(CFG CAS STATUS);
       if(tmp == CFG CAS STATUS LOW TONE) {
               // Change timer to 10msec
               writeCfgReg(CFG TIME CTRL,0x00);
               writeCfgReg(CFG TIME TARG,0x00);
               writeCfgReg(CFG TIME TARG LSB,0x09);
               writeCfgReg(CFG TIME CTRL,0x80);
               byCounter = 0;
               byContactIDState = CONTID HANDSHAKE1;
}
else if(DevStatus[3] & STATUS3 TIMER INT) {
       // Timer interrupt has occurred
       byCounter++;
       if(byCounter > 10) {
               // 10 second timeout waiting for handshake tone
               byContactIDState = CONTID WAIT IDLE;
               // Change timer to default 10msec
               writeCfgReg(CFG TIME CTRL,0x00);
               writeCfgReg(CFG TIME TARG,0x00);
               writeCfgReg(CFG TIME TARG LSB,0x09);
               writeCfgReg(CFG TIME CTRL,0x80);
}
break;
case CONTID HANDSHAKE1:
// This is second stage of detecting ContactID handshake a
// 2300Hz tone.
if(DevStatus[2] & STATUS2 CAS INT){
       tmp = ReadRegister(CFG CAS STATUS);
       if(tmp == CFG CAS STATUS HI TONE){
               byCounter = 0;
               byContactIDState = CONTID DELAY TO TX;
else if(DevStatus[3] & STATUS3 TIMER INT){
       // Timer interrupt has occurred
       byCounter++;
       if(byCounter > 100){
               // 100 millisecond timeout waiting for handshake tone
               bUsbStatus[4] &= ~USB STATUS4 CTID STATUS;
               bUsbStatus[4] |= USB_STATUS4 CTID TIMEOUT1;
               byContactIDState = CONTID WAIT IDLE;
```

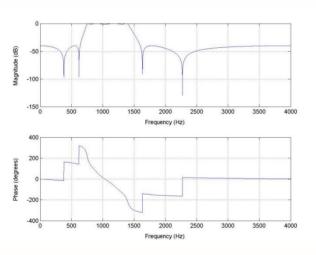
### nuvoTon

```
}
break;
case CONTID DELAY TO TX:
if (DevStatus[3] & STATUS3 TIMER INT) {
       // Timer interrupt has occurred
       byCounter++;
       if(byCounter > 199){
               // 200 millisecond delay until transmit
               byContactIDState = CONTID TRANSMITO;
}
break;
case CONTID TRANSMITO:
// If there is Contact ID data on FIFO to
// transmit, start transmission.
// The 16 digits of the CID frame are packed into
// 8 bytes of the FIFO.
if(TxDataFifo.Depth >= 8){
       // Load DTMF tone buffer
       for(i=0;i<8;i++){
               writeCfgReg(CFG_TONE_BUFFER+i,
               TxDataFifo.Fifo Buffer[((TxDataFifo.ReadIndex + i) & 0x3F)]);
       }
       writeCfgReg( CFG_TONE_BUF_LEN, 16);
       writeCfgReg( CFG_TONE_CTRL, CFG_TONE_CTRL__CLK_EN +
       CFG TONE CTRL DTMF MODE + CFG TONE CTRL GEN EN);
       byContactIDState = CONTID TRANSMIT1;
}else{
       // No data so finished transmission
       bUsbStatus[4] &= ~USB STATUS4 CTID STATUS;
       bUsbStatus[4] |= USB_STATUS4 CTID FINISHED;
       byContactIDState = CONTID WAIT IDLE;
}
break;
case CONTID TRANSMIT1:
if(DevStatus[2] & STATUS2 TONE INT){
       // DTMF transmission finished.
       byCounter=0;
       // Set timer to 250ms
       writeCfgReg(CFG TIME CTRL,0x00);
       writeCfgReg(CFG TIME TARG,0x00);
       writeCfgReg(CFG TIME TARG LSB, 0xF9);
       writeCfgReg(CFG TIME CTRL,0x80);
       byContactIDState = CONTID KISSOFF0;
break;
case CONTID KISSOFF0:
```

### nuvoTon

```
// Detecting 1400Hz Kiss-off tone.
if(DevStatus[2] & STATUS2 CAS INT){
       tmp = ReadRegister(CFG CAS STATUS);
       if (tmp == CFG CAS STATUS LOW TONE) {
               byCounter = 0;
               // Setup to generate tone OFF interrupt
               writeCfgReg(CFG CAS CTRL, CFG CAS CTRL TONE OFF INT +
               CFG CAS CTRL IRR EN + CFG CAS CTRL CAS EN);
               byContactIDState = CONTID KISSOFF1;
else if(DevStatus[3] & STATUS3 TIMER INT)
{
       // Timer interrupt has occurred
       byCounter++;
       if(byCounter > 5){
               // 1.25 sec timeout waiting for handshake tone
               writeCfgReg(CFG TIME CTRL,0x00);
               writeCfgReg(CFG TIME TARG,0x00);
               writeCfgReg(CFG TIME TARG LSB,0x09);
               writeCfgReg(CFG TIME CTRL,0x80);
               if (retry < 4) {
                       retry++;
                       byContactIDState = CONTID TRANSMITO;
               }else{
                       bUsbStatus[4] &= ~USB STATUS4 CTID STATUS;
                       bUsbStatus[4] |= USB STATUS4 CTID TIMEOUT2;
                       byContactIDState = CONTID WAIT IDLE;
               }
       }
}
break;
case CONTID KISSOFF1:
// Detecting end of 1400Hz Kiss-off tone.
if(DevStatus[2] & STATUS2 CAS INT)
       // Interrupt set to detect end of kiss-off tone.
       // Setup to generate tone OFF interrupt
       writeCfgReg(CFG CAS CTRL, CFG CAS CTRL TONE ON INT +
       CFG_CAS_CTRL__IRR_EN + CFG_CAS_CTRL__CAS_EN);
               // We have successfully sent the Contact ID message
               // clear data from the FIFO and go to next message.
       TxDataFifo.ReadIndex += 8;
       TxDataFifo.Depth -= 8;
       retry = 0;
               // Change timer tick to 20ms to create 400ms delay
       writeCfgReg(CFG TIME CTRL, 0x00);
       writeCfgReg(CFG TIME TARG,0x00);
       writeCfgReg(CFG TIME TARG LSB,19);
```

### nuvoton


}

}

```
writeCfgReg(CFG_TIME_CTRL,0x80);
byCounter = 0;
byContactIDState = CONTID_DELAY_TO_TX;
}
break;
case CONTID_WAIT_IDLE:
if(!(bUsbCtrl[0] & USB_CTRL0_CONTID_START)){
byContactIDState = CONTID_IDLE;
}
break;
default:
byContactIDState = CONTID_IDLE;
break;
```

### 8.15 Voice Energy Detection (Speech Energy Detection)

The voice energy detector allows measurement of signal energy in the voice band between 750Hz to 1400Hz. It is used to detect speech on the line to aid in CID functions or line in use detection. Band-pass filter frequency response of voice energy detection is in Figure 8-24.





### nuvoTon

#### 8.15.1 VD_CTRL

Address	5	Access Mode	Value At Reset	Nomir	al Value		
0x1F0		R/W	0x00				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
VD_EN	Reserve	ed Reserved	Reserved	Reserved VI			

VD_TC[3:0] Voice Detect TC (time constant) determines the response of the voice detect energy averaging. Larger values imply a larger time constant, greater stability but less responsive to changes in energy level.

VD_EN Enable the Voice Detection block

#### 8.15.2 VD_STATUS

Addres	s	Ac	cess Mode	Value At Res	et	Nomin	al Value		
0x1F1	R		0x00					192	
Bit7	Bit6		Bit5	Bit4	Bit3		Bit2	Bit1	Bit0
Reserved	Reserve	ed	Reserved	Reserved	Reserv	ved	Reserved	Reserved	VD_RX

VD_RX Voice Energy Detected. 1: Energy exceeds VD_THRES 0: Energy less than VD_THRES or VD_EN=0.

#### 8.15.3 VD_THRES

F2 F3

	Address	s	Ac	cess Mode	Value At Res	et	Nominal Value			
	0x1F2~0x1F3		R/W		0x0100					
	Bit7 Bit6 B		Bit5	Bit4		Bit3	Bit2	Bit1	Bit0	
2					VD_THR	ES [1	5:8]			
3	VD_THRES [7:0]									

VD_THRES[15:0] This register defines the threshold of voice detection (speech energy). If the energy is greater than VD_THRES, VD_RX is high. The 16 bit value represents the decimal fraction of full scale in 2's complement format.

#### 8.15.4 VD_ENERGY

	Addre	ess	Ac	cess Mode	Value At Res	et	Nomin	al Value			
	0x1F4~0	)x1F5	2)	R	0x0000						
	Bit7	Bite	5	Bit5	Bit4		Bit3	Bit2	Bit1	Bit0	
F4					VD_ENE	RGY [	15:8]				
F5		VD_ENERGY [7:0]									
			- 1		2.00						



VD_ENERGY[15:0] This register represents the instantaneous signal power from 750Hz to 1400Hz. The value is in the range, 0x0000 to 0xFFFF, with larger value representing larger signal power.

### 8.16 Call Progress Tone Detector

The call progress tone detector is a narrow band pass filter from 300Hz to 650Hz; its detection algorithm is similar to voice energy detection. It can be used to detect call progress tones such as dial tones.

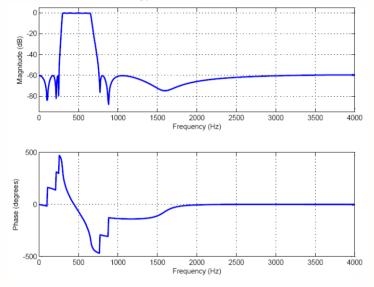



Figure 8-25 Call progress tone band-pass filter frequency response

#### 8.16.1 CPT_CTRL

	Addres	S	Ac	ccess Mode	Value At Res	et	Nomin	al Value		
5	0x280		R/W		0x07					
-	Bit7	Bite	it6 Bit5		Bit4		Bit3	Bit2	Bit1	Bit0
	CPT_EN	Reserv	Reserved Reserved		Reserved			CPT_	TC [3:0]	

CPT_TC[3:0] Call Progress Tone TC (time constant) determines the response of the Call Progress Tone energy averaging. Larger values imply a larger time constant, greater stability but less responsive to changes in energy level.

CPT_EN

Enable the Call Progress Tone detection block



#### 8.16.2 CPT_STATUS

Addres	s	Ac	cess Mode	Value At Rese	et Nomin	al Value		
0x281		R		0x00				
Bit7	Bit6	5	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Reserved	Reserv	ved	Reserved	Reserved	Reserved	Reserved	Reserved	CPT_RX

CPT_RX Call Progress Tone Detected. 1: Energy exceeds CPT_THRES_H 0: Energy less than CPT_THRES_L or CPT_EN=0.

#### 8.16.3 CPT_THRES_H

	Address	s	Ac	cess Mode	Value At Res	et	Nomin	al Value		
	0x282~0x	0x282~0x283 R/W		R/W	0x2400				0	20
	Bit7	Bit7 Bit6 Bit5		Bit4		Bit3	Bit2	Bit1	Bit0	
					CPT_THRE	ES_H	[15:8]			No.
CPT_THRES_H [7:0]									N.	

82 83

84

CPT_THRES_H[15:0] This register defines the on/high threshold of the Call Progress Tone detection. If the energy is greater than CPT_THRES_H, CPT_RX will be set. The 16 bit value represents the decimal fraction of full scale in 2's complement format.

### 8.16.4 CPT_THRES_L

	Address	s	Ac	cess Mode	Value At Res	et	Nomin	al Value		
	0x284~0x	285		R/W	0x1A00					
	Bit7	Bit7 Bit6		Bit5	Bit4		Bit3	Bit2	Bit1	Bit0
1						ES_L	[15:8]			
5					CPT_THR	ES_L	[7:0]			

CPT_THRES_L[15:0] This register defines the off/low threshold of the Call Progress Tone detection. If the energy is less than CPT_THRES_L, CPT_RX will be cleared. The 16 bit value represents the decimal fraction of full scale in 2's complement format.



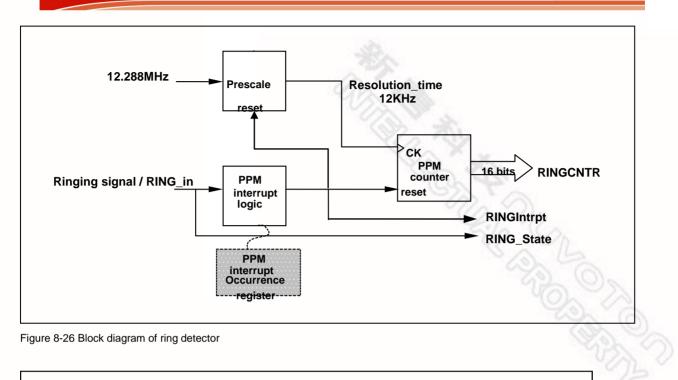
#### 8.16.5 CPT ENERGY

	Addres	s	Ac	cess Mode	Value At Rese	et	Nominal Value			
	0x286~0x	0x286~0x287		R	0x0000					
	Bit7	Bit	6	Bit5	Bit4	Bit.	3 Bit	2	Bit1	Bit0
86				-	CPT_ENER	RGY [15:8	3]		_	
87					CPT_ENE	RGY [7:0	]			

87

CPT ENERGY[15:0] This register represents the instantaneous signal power from 300Hz to 650Hz. The value is in the range, 0x0000 to 0xFFFF, with larger value representing larger signal power.

### 8.17 Ring Detection and Pulse / Period Width Measurement


#### Schmitt trigger:

The Schmitt trigger input to the ISD61S00 has the nominal characteristics of VH=1.63 volt and VL=1.33 volt.

#### Pulse / Period Width Measurement (PPM):

The interrupt occurrence could be selected to occur at falling edge or rising edge or both edges of ringing signal. For example, if the rising edge has been selected, an interrupt event will be sent at each rising edge of ringing signal. The RNG CTRL[1:0] is used to select the interrupt occurrence. Figure 8-26 shows the function block of ring detector and Figure 8-27 illustrates the operation of ring detector by the timing waveforms. The ringing signal goes through the Schmitt trigger. The PPM interrupt occurrence register RINGIntrptSel[1:0] is set to 0x03 in the illustration, so the RINGIN signal is then examined by the PPM interrupt generator to generate the interrupt event at the both edge transitions of RINGIN signal. To save the software computation power, PPM counter logic can report the length between consecutive interrupt events by a counter value. The counter value is stored in register RINGCNTR that is related to the PPM counter operating frequency. Depending on the time resolution to measure the length between consecutive interrupt events.





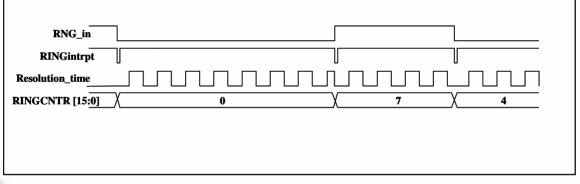



Figure 8-27 The timing of ring detector with RNG_CTRL[1:0]=2'b11

### 8.17.1 RNG_CTRL

Addres	Address A		ess Mode	Value At Reset	Nominal	Value		
0x01B0	)		R/W	0x00				
Bit 7	Bit 6	6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RING_EN	RESER	VED	RESERVED	RESERVED	RES[1]	RES[0]	INT_SEL[1]	INT_SEL[0]

RING_EN RING Operation Enable 1=Enable, 0=Disable

RES[1:0] Select the resolution of the PPM measurement. The maximum time interval measureable is 65536 * resolution time unit. See Table 8-19.

### nuvoTon

=1

INT_SEL[0] =1 Generates an interrupt on falling edge.

INT_SEL[1]

Generates an interrupt on rising edge.

Interrupt Occurrence	Address=0x01B0				
	Bit[1]	Bit[0]			
No Interrupt	0	0			
Interrupt on falling edge	0	1			
Interrupt on rising edge	1 1	0			
Interrupt on both falling and rising edge	1 1	1			

Table 8-19 Values of PPM Timer resolution.

RES[1:0]	Resolution Time Unit
0	1/12KHz = 83us
1	1/24 KHz = 41.7us
2	1/48 KHz = 20.8us
3	1/96 KHz = 10.4us





### 8.17.2 RNG_STATE

Address	Address Access N		ess Mode	Mode Value At Reset		Value		
0x01B1			R	0x00		2		_
Bit 7	Bit	6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RESERVED	RESE	RVED	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	RING_STATE

RING_STATE This bit reflects the state of ringing signal passing through the Schmitt trigger input pad.

### 8.17.3 RNG_CNTR

Addres	s	Aco	cess Mode	Value At Res	et	Nomin	al Value		
0x1B2~0x	1B3		R	0x0000					200
Bit7	Bite	5	Bit5	Bit4		Bit3	Bit2	Bit1	Bit0
				RNG_CN	TR[1	5:8]			2
				RNG_C	NTR[7	/:0]			

The RNG_CNTR register is updated with the PPM counter value as the interrupt is generated. The PPM counter is a 16-bit counter which is reset to 0 and starts to increase by 1 to maximum value 65535, when the PPM interrupt is generated. The PPM counter will saturate at the maximum value 65536 until the next interrupt occurrence.

Table 8-19 illustrates the expected counter values for detecting ringing signals according to the requirements of the BT and North American systems.

Table: 8-16 PPM counter value vs. PPM resolution for various ringing frequencies and cadences.

PPM	PPM				USA						BT	
counter	counter				Freq						Cadence	
operating frequency (Hz)	resolution	10 Hz	20Hz	15.8 Hz	50Hz	68 Hz	69 Hz	70 Hz				
(112)	12	100 ms	50 ms	63.29 ms	20 ms	14.7 ms	14.49 ms	14.28 ms	4 sec off	0.2 sec off	0.4 sec on	2 sec off
12K	0.083 ms	1200 (04B0)	600 (0258)	759 (02F7)	240 (00F0)	176 (00B0)	173 (00AD)	171 (00AB)	48200	2410	4820	24100
24K 🤇	0.042ms	2400 (0960	1200 (04B0)	1518 (05EE)	480 (01E0)	352 (0160)	348 (15C)	342 (0156)	65535	4762	9524	47620
48K	0.021ms	4800 (12C0)	2400 (0960)	3038 (0BDE)	960 (3C0)	706 (2C2)	696 (2B8)	686 (2AE)	65535	9524	19047	65535
96K	0.01ms	9600 (2580)	4800 (12C0)	6076 (17BC)	1920 (0780)	1412 (0584)	1392 (0570)	1372 (055C)	65535	20000	40000	65535

- 122 -

В2 В3



PPM counter, max (16 bit counter)=65535 ( PPM counter value= PPM counter operating frequency / Frequency)

### 8.17.4 RNG_LATCH

Address	ddress A		ess Mode	Value At Reset	Nominal	Nominal Value		
0x1B4			R/W	0x00			l	
Bit 7	Bit	6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RESERVED	RESE	RVED	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	LATCH

LATCH 0: RNG_CNTR is updated each interrupt occurrence regardless of whether interrupt has been serviced.

1: The RNG_CNTR value is latched until RNG_LATCH is written again. This prevents noise on ring signal or slow interrupt servicing causing missed measurements. With LATCH=1, to service interrupt read RNG_CNTR, then write RNG_LATCH. Once written, next interrupt will update RNG_CNTR to a new value. If RNG_LATCH is not written, new interrupts will continue to be generated but RNG_CNTR will not be updated.

8.17.5

#### 8.18 Timer

The ISD61S00 incorporates a programmable 1-millisecond resolution timer. It can be programmed to generate a pulse in the range 1 ~ 65536 milliseconds (1 millisecond spacing). When the timer is enabled by writing to TIME_CTRL[7]=1 the 1 ms timer will start to count until the current timer count (TIME_CNT) is equal to the target count (TIME_TARG) at which time an interrupt event is generated. A write of the timer control register (TIME_CTRL) will force timer to reset/clear. The interval between timer interrupts will be TIME_TARG+1ms.

8.18.1



#### 8.18.2 TIME TARG

	Addres	S	Ace	cess Mode	Value At Res	et Non	ninal Value		
	0x292~0x	293		R/W	0x0000				
	Bit7	Bit	5	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
2					TIME_TA	RG[15:8]	2 V J	2	
3					TIME_TA	ARG[7:0]	YON N		

92 9

TIME TARG[15:0]

TIME TARG+1 ms timer target count, maximum count 65536 ms.

### 8.18.3 TIME CNT

	Addres	S	Ac	cess Mode	Value At Res	et	Nomin	al Value		
	0x294~0x	295		R	0x0000				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	S. (C
	Bit7	Bite	5	Bit5	Bit4		Bit3	Bit2	Bit1	Bit0
94		-		-	TIME_C	NT[15	5:8]			
95					TIME_C	CNT[7	:0]			

TIME_CNT[15:0]

Current timer count number. Unit: ms.

### 8.19 Gain Stage and Mixer

The Gain stage and Mixer block allows routing of PCM signals between various blocks. There are five gain- mixer channels allowing mixes for:

- 1. AEC Input (to air CODEC)
- 2. LEC Input (to PSTN CODEC)
- 3. Record (to audio compression block).
- 4. I2S Left Channel.
- 5. I2S Right Channel.

Each of the mixers has five variable gain inputs along with inputs from the tone generator and FSK encoder. The five variable gain inputs are:

- 1. MIC output from air CODEC.
- 2. PLAY output from audio decompression.
- 3. TI output from PSTN CODEC.
- 4. I2S_L input from I2S left channel.
- 5. I2S R input from I2S right channel.

The block diagram of a single mixer channel is shown in Figure 8-28.



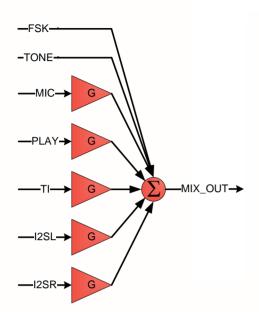



Figure 8-28 Gain/Mixer Channel

In addition to the mixers there are also gain stages associated with each of the CODECs and echo cancellers that allow input and output gain control along with side tone insertion.

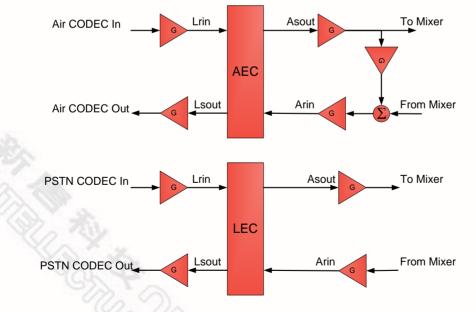



Figure 8-29 CODEC/EC Gain Stages

Each gain stage is controlled by seven bits of a configuration register. The gain is configurable from +24dB to -31.5dB in 0.5dB steps. The gain is a seven bit two's complement number with 0x40

### ηυνοτοη

corresponding to a total MUTE of the signal as shown in Table 8-20. The list of mixer gain registers and their associated path is given in Table 8-21.

Table 8-20 Gain Stage Control value Mapping.

Index	Gain (dB)	Index	Gain (dB)	Index	Gain (dB)	Index	Gain (dB
0x00	0.0	0x20	16.0	0x7F	-0.5	0x5F	-16.5
0x01	0.5	0x21	16.5	0x7E	-1.0	0x5E	-17.0
0x02	1.0	0x22	17.0	0x7D	-1.5	0x5D	-17.5
0x03	1.5	0x23	17.5	0x7C	-2.0	0x5C	-18.0
0x04	2.0	0x24	18.0	0x7B	-2.5	0x5B	-18.5
0x05	2.5	0x25	18.5	0x7A	-3.0	0x5A	-19.0
0x06	3.0	0x26	19.0	0x79	-3.5	0x59	-19.5
0x07	3.5	0x27	19.5	0x78	-4.0	0x58	-20.0
0x08	4.0	0x28	20.0	0x77	-4.5	0x57	-20.5
0x09	4.5	0x29	20.5	0x76	-5.0	0x56	-21.0
0x0A	5.0	0x2A	21.0	0x75	-5.5	0x55	-21.5
0x0B	5.5	0x2B	21.5	0x74	-6.0	0x54	-22.0
0x0C	6.0	0x2C	22.0	0x73	-6.5	0x53	-22.5
0x0D	6.5	0x2D	22.5	0x72	-7.0	0x52	-23.0
0x0E	7.0	0x2E	23.0	0x71	-7.5	0x51	-23.5
0x0F	7.5	0x2F	23.5	0x70	-8.0	0x50	-24.0
0x10	8.0	0x30	24.0	0x6F	-8.5	0x4F	-24.5
0x11	8.5	0x31	24.0	0x6E	-9.0	0x4E	-25.0
0x12	9.0	0x32	24.0	0x6D	-9.5	0x4D	-25.5
0x13	9.5	0x33	24.0	0x6C	-10.0	0x4C	-26.0
0x14	10.0	0x34	24.0	0x6B	-10.5	0x4B	-26.5
0x15	10.5	0x35	24.0	0x6A	-11.0	0x4A	-27.0
0x16	11.0	0x36	24.0	0x69	-11.5	0x49	-27.5
0x17	11.5	0x37	24.0	0x68	-12.0	0x48	-28.0
0x18	12.0	0x38	24.0	0x67	-12.5	0x47	-28.5
0x19	12.5	0x39	24.0	0x66	-13.0	0x46	-29.0
0x1A	13.0	0x3A	24.0	0x65	-13.5	0x45	-29.5
0x1B	13.5	0x3B	24.0	0x64	-14.0	0x44	-30.0
0x1C	14.0	0x3C	24.0	0x63	-14.5	0x43	-30.5
0x1D	14.5	0x3D	24.0	0x62	-15.0	0x42	-31.0
0x1E	15.0	0x3E	24.0	0x61	-15.5	0x41	-31.5
0x1F	15.5	0x3F	24.0	0x60	-16.0	0x40	Mute

The registers that control each gain stage are listed in Table 8-21 and their position is indicated by their address in Table 8-21.

### ηυνοτοη

Table 8-21 Mixer Gain Registers.

Register	Description	Address
GS_ACST	Air CODEC Side tone	111
GS_ACIG	Air CODEC input Gain	112
GS_ACOG	Air CODEC output Gain	113
GS_AEOG	AEC Output Gain	114
GS_AEIG	AEC Input Gain	115
GS_LCIG	Line CODEC input Gain	116
GS_LCOG	Line CODEC output Gain	117
GS_LEOG	LEC Output Gain	118
GS_LEIG	LEC Input Gain	119
GS_AOAI	AEC out - AEC in Gain	11A
GS_LOAI	LEC out - AEC in Gain	11B
GS_PLAI	PLAY - AEC in Gain	11C
GS_ILAI	I2SL - AEC in	11D
GS_IRAI	I2SR - AEC in	11E
GS_AOLI	AEC out - LEC in Gain	11F
GS_LOLI	LEC out - LEC in Gain	120
GS_PLLI	PLAY - LEC in Gain	121

Register	Description	Address
GS_ILLI	I2SL - LEC in	122
GS_IRLI	I2SR - LEC in	123
GS_AORI	AEC out - REC in Gain	124
GS_LORI	LEC out - REC in Gain	125
GS_PLRI	PLAY - REC in Gain	126
GS_ILRI	I2SL - REC in	127
GS_IRRI	I2SR - REC in	128
GS_AOIL	AEC out - I2SL in Gain	129
GS_LOIL	LEC out - I2SL in Gain	12A
GS_PLIL	PLAY - I2SL in Gain	12B
GS_ILIL	I2SL - I2SL in	12C
GS_IRIL	I2SR - I2SL in	12D
GS_AOIR	AEC out - I2SR in Gain	12E
GS_LOIR	LEC out - I2SR in Gain	12F
GS_PLIR	PLAY - I2SR in Gain	130
GS_ILIR	I2SL - I2SR in	131
GS_IRIR	I2SR - I2SR in	132

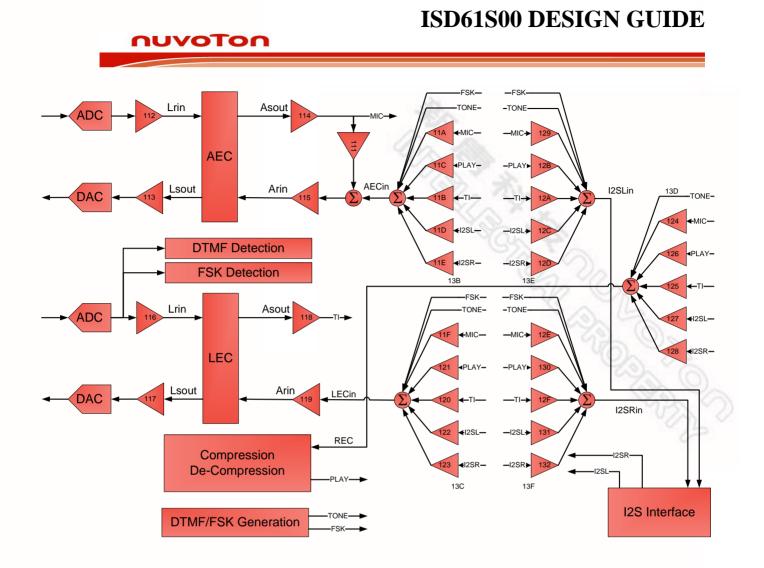



Figure 8-30 Gain Stages and Mixer with Control Addresses

### 8.19.1 GS_CTRL

Address	s A	ccess Mode	Value At Rese	et Nomin	al Value		
0x110	K	R/W	0x00				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
GSMIX_EN		-	-	-	-	-	-

GSMIX_EN Enable the Mixer Gain Stage.



#### 8.19.2 CODEC EC Gain Stages

		-										
Address	Access M	ode Va	lue At Reset	Nominal Valu	le							
0x111-0x11	9 R/W		0x00									
Address	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
0x111	POSITION	G1: Air	G1: Air CODEC Side-Tone Gain [6:0]									
0x112	Reserved	G2: Air	G2: Air ADC To AEC Gain [6:0]									
0x113	Reserved	G3: AE	G3: AEC To Air DAC Gain [6:0]									
0x114	Reserved	G4: AE	G4: AEC To MIC Gain [6:0]									
0x115	Reserved	G5: AE	G5: AECin Mixer To AEC Gain [6:0]									
0x116	Reserved	G6: Line	G6: Line ADC To LEC Gain [6:0]									
0x117	Reserved	G7: LEC	C To Line DA	AC Gain [6:0]								
0x118	Reserved	G8: LEC	C To TI Gain	[6:0]								
0x119	Reserved	G9: LECin Mixer To LEC Gain [6:0]										

Side-tone gain (2's complement). Air CODEC Side-Tone Gain [6:0] --- Operation range: -0.5 dB ~ -31.5 dB, 0.5 dB per step. --- 0x40 means mute/disable this path. Determines whether the side tone insertion is before or after the echo cancellation block. POSITION 0: After AEC as per Figure 8-30. 1: Before - immediately after DAC/ADC. Air ADC To AEC Gain [6:0] Gain in 2's complement format, G*0.5dB. AEC To Air DAC Gain [6:0] Operation range: +24 dB ~ -31.5 dB, 0.5 dB per step. AEC To MIC Gain [6:0] 0x40 mutes gain stage. AEC To MIC Gain [6:0] CODEC To LEC Gain [6:0] LEC To CODEC Gain [6:0] Note: As per Table 8-20 LEC To Mixer Gain [6:0] Mixer To LEC Gain [6:0]



### 8.19.3 AECin Path Mixing Gain Control

		1				10 A.C.	_					
Address		Access Mo	ode	Value	At Reset	Nominal Value	6.0					
0x11A-0x11	E	R/W		(	)x00		1.0					
Address		Bit 7	Bit 6 Bit 5 Bit 4		Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
0x11A	R	Reserved		GA: AEC to AECin Path Mixer Gain Index [6:0]								
0x11B	R	eserved	GB	GB: LEC to AECin Path Mixer Gain Index [6:0]								
0x11C	R	eserved	GC: PLAY to AECin Path Mixer Gain Index [6:0]									
0x11D	R	eserved	GD: I2S L to AECin Path Mixer Gain Index [6:0]									
0x11E	(11E Reserved			GE: I2S R to AECin Path Mixer Gain Index [6:0]								

AEC to AECin Path Mixer Gain Index [6:0] LEC to AECin Path Mixer Gain Index [6:0] PLAY to AECin Path Gain Index [6:0] I2S L to AECin Path Mixer Gain Index [6:0] I2S R to AECin Path Mixer Gain Index [6:0] Gain in 2's complement format, G*0.5dB.

- Operation range: +24 dB ~ -31.5 dB, 0.5 dB per step.
- 0x40 mutes gain stage.

Note: As per Table 8-20

### 8.19.4 LECin Path Mixing Gain Control

Address	Access M	lode	Value At Reset	Nominal Value								
0x11F-0x12	3 R/W		0x00									
Address	Bit 7	Bit	Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1									
0x11F	Reserved	GF :	GF : AEC to LECin Path Mixer Gain Index [6:0]									
0x120	Reserved	G10	G10: LEC to LECin Path Mixer Gain Index [6:0]									
0x121	Reserved	G11	G11: PLAY to LECin Path Mixer Gain Index [6:0]									
0x122	Reserved	G12	G12: I2S L to LECin Path Mixer Gain Index [6:0]									
0x123	Reserved	G13	G13: I2S R to LECin Path Mixer Gain Index [6:0]									

AEC to LECin Path Mixer Gain Index [6:0] LEC to LECin Path Mixer Gain Index [6:0] Gain in 2's complement format, G*0.5dB.

• Operation range: +24 dB ~ -31.5 dB, 0.5 dB per step.

• 0x40 mutes gain stage.

- 130 -

### nuvoton

PLAY to LECin Path Gain Index [6:0]

I2S L to LECin Path Mixer Gain Index [6:0] I2S R to LECin Path Mixer Gain Index [6:0] Note: As per Table 8-20

### 8.19.5 REC Path Mixing Gain Control Registers

Address		Access Mo	de	Value	At Reset	Nominal Value	30					
0x124-0x12	8	R/W		0	)x00		- Yah	12				
Address		Bit 7	Bit 6	6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
0x124	R	Reserved		G14 : AEC to REC Path Mixer Gain Index [6:0]								
0x125	R	eserved	G15: LEC to REC Path Mixer Gain Index [6:0]									
0x126	R	eserved	erved G16: PLAY to REC Path Mixer Gain Index [6:0]									
0x127	R	eserved	G17:	I2S	L to REC	Path Mixer G	ain Index	[6:0]				
0x128	R	eserved	G18: I2S R to REC Path Mixer Gain Index [6:0]									

AEC to REC Path Mixer Gain Index [6:0] LEC to REC Path Mixer Gain Index [6:0] PLAY to REC Path Gain Index [6:0] I2S L to REC Path Mixer Gain Index [6:0] I2S R to REC Path Mixer Gain Index [6:0] Gain in 2's complement format, G*0.5dB.

• Operation range: +24 dB ~ -31.5 dB, 0.5 dB per step.

• 0x40 mutes gain stage.

Note: As per Table 8-20

### nuvoton

			cess Mode Value At Reset Nominal Value										
Address		Access Mo	de	Value At	Reset	Nominal Value							
0x129-0x12	D	R/W		0x00	)		5						
Address		Bit 7	Bit	6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
0x129	R	Reserved		G19 : AEC to I2SLin Path Mixer Gain Index [6:0]									
0x12A	R	eserved	G1A: LEC to I2SLin Path Mixer Gain Index [6:0]										
0x12B	R	eserved	served G1B: PLAY to I2SLin Path Mixer Gain Index [6:0]										
0x12C	R	eserved	G10	C: I2S L	to I2SL	in Path Mixer	Gain Inde	x [6:0]					
0x12D	Reserved		G1D: I2S R to I2SLin Path Mixer Gain Index [6:0]										

### 8.19.6 I2SLin Path Mixing Gain Control Registers

AEC to I2SLin Path Mixer Gain Index [6:0] LEC to I2SLin Path Mixer Gain Index [6:0] PLAY to I2SLin Path Gain Index [6:0] I2S L to I2SLin Path Mixer Gain Index [6:0] I2S R to I2SLin Path Mixer Gain Index [6:0] Gain in 2's complement format, G*0.5dB.

- Operation range: +24 dB ~ -31.5 dB, 0.5 dB per step. .
- 0x40 mutes gain stage. •

Note: As per Table 8-20

### 8.19.7 I2SRin Path Mixing Gain Control Registers

	Bit 6	Bit 5	Bit 4								
0v12E	-	Bit 5	Rit 4			1					
0x12E Reserved	G1E · AE	Bit 6         Bit 5         Bit 4         Bit 3         Bit 2         Bit 1									
	ed G1E : AEC to I2SRin Path Mixer Gain Index [6:0]										
0x12F Reserved	G1F: LEC	G1F: LEC to I2SRin Path Mixer Gain Index [6:0]									
0x130 Reserved	G20: PLA	G20: PLAY to I2SRin Path Mixer Gain Index [6:0]									
0x131 Reserved	G21: I2S	G21: I2S L to I2SRin Path Mixer Gain Index [6:0]									
0x132 Reserved	G22: I2S	G22: I2S R to I2SRin Path Mixer Gain Index [6:0]									

### nuvoton

AEC to I2SRin Path Mixer Gain Index [6:0] LEC to I2SRin Path Mixer Gain Index [6:0] PLAY to I2SRin Path Gain Index [6:0] I2S L to I2SRin Path Mixer Gain Index [6:0] I2S R to I2SRin Path Mixer Gain Index [6:0] Gain in 2's complement format, G*0.5dB.

- Operation range: +24 dB ~ -31.5 dB, 0.5 dB per step.
- 0x40 mutes gain stage.

Note: As per Table 8-20

		•	N/ 1	VI AD	N7 · 1 X7	1 70				
Address		Acce	ss Mode	Value At Reset	Nominal Va	alue				
0x13B-0x13	3F	F	R/W	0x00			22 (2)			
Address	В	it 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
	Res	erved	FSK_GEN	SK_GEN TONE_GEN I2S_R I2S_L		115K	TL	MIC		
0x13B	Res	erved			nable [6:0]	-	-			
0x13C	Res	erved			LECin Mixer Source Enable [6:0]					
0x13D	Res	erved			REC Mixer Source Enable [6:0]					
0x13E	Res	erved			I2SLin Mixe	er Source Er	nable [6:0]			
0x13F	Res	erved			2SRin Mixe	er Source E	nable [6:0]			

### 8.19.8 Mixer Source Enable Registers

AECin Mixer Source Enable [6:0] LECin Mixer Source Enable [6:0] REC Mixer Source Enable [6:0] I2SLin Mixer Source Enable [6:0] I2SRin Mixer Source Enable [6:0] These registers determine which of the input sources to the mixers are enabled. 1 = Source Enable, 0 = Source Disable

For example if bit 6 of AECin register (0x13B) is set then output of the FSK

Note: The Mixing operation is performed after Mixer Gain.

generator will be mixed to the output. If bit 1 is set then the TI input will be mixed to the output.

#### Mixer Example:

--- 0x 013B = 0x 01,AEC out = AEC in *GA (Loop Back)

0x 013C = 0x 12,	LEC out = I2S_R in *G12 + LEC in*G10
0x 013D = 0x 23,	I15K out = DTMF_GEN in + LEC in *G15 + AEC in *G14
0x 013E = 0x 37,	I2S_L out = DTMF_GEN in + I2S_R in *G1D + I15K in *G1B + LEC in *G1A + AEC in *G19
0x 013F = 0x 7F,	I2S_R out = FSK_GEN in + TONE_GEN in + I2S_R in *G22 + I2S_L in *G21+ I15K in *G20 + LEC in *G1F + AEC in *G1E

### 8.20 Air and Line CODEC



The ISD61S00 contains two channels of A/D and D/A conversion for the air side interface and the line side interface.

#### 8.20.1 AC_EN, LC_EN – Air /Line CODEC Enable Register

Address			s Mode	Value At Reset					
0x140 (Air 0x150 (Line	,	R/	W		0x20	- X	X		
Bit 7	F	Bit 6	Bit	5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CODEC_EN	Rea	served	IMAGE	E_FIL	SAT_ON	HPF_FF	REQ [3:2]		-

CODEC_EN CODEC Digital Path Enable. 1 = Enable, 0 = Disable (Power Down).

IMAGE_FIL Enable image filter. The image IIR filter may be used to remove aliased image of signal resulting from down-sampling. This filter is available for use in 8kHz mode on the line side and/or the air side, and in 16kHz mode on the air side only.

SAT_ON Enable MACC saturation control. It is recommended that this is enabled.

#### HPF_FREQ [3:2] Control for high pass filter cut-off frequency.

For 16kHz sampling the cut-off frequencies are:

- 00 = 6.7Hz Cutoff
- 01 = 81.7Hz Cutoff
- 10 = 204Hz Cutoff
- 11 = Reserved.

For 8kHz sampling the cut-off frequencies are:

- 00 = 3.3Hz Cutoff
- 01 = 40.8Hz Cutoff
- 10 = 102Hz Cutoff
- 11 = Reserved.

To ensure the correct reset and initial conditions of the CODEC the following sequence should be observed for power up and down of the CODEC.

CODEC power up sequence:

- 1. Begin at state 0x00 (CODEC_EN=0, IMAGE_FIL=0, SAT_ON=0)
- 2. Enable CODEC 0x80 (CODEC_EN=1, IMAGE_FIL=0, SAT_ON=0)

3. Enable image filter (if applicable) 0xB0 (CODEC_EN=1, IMAGE_FIL=1, SAT_ON=1)

CODEC power down sequence:

• Set to state 0x00 (CODEC_EN=0, IMAGE_FIL=0, SAT_ON=0).

### nuvoTon

### 8.20.2 AC_CTRL, LC_CTRL – Air /Line CODEC Dither Control

Address	Address Access		Mode	Mode Value At Reset					
0x141 (Air) 0x151(Line)		R/W			0x07	and a			
Bit 7	Bit 6		Bit 6 Bit 5		Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Reserved	Reserved			Rese	erved	Reserved	Dither_sign	Dither_level	Dither_enable

Dither_enable = 1: Enable dither;

Dither_level = 1: 17bits dither; 0: 16bits dither;

Dither_sign =0: Additional random noise is both positive and negative. =1: Additional random noise is only positive.

### 8.20.3 AC_ADCG, LC_ADCG – Air/Line CODEC ADC Gain.

	Addres	s	Aco	cess Mode	Value At Res	et	Nomin	al Value			
	0x142~0x14 0x152~0x153		R/W		0x0400						
ĺ	Bit7	Bit6		Bit5	Bit4	Bit3		Bit2	Bit1	Bit0	
ĺ	ADC_DIG_GAIN[11:8]										
ĺ	ADC_DIG_GAIN[7:0]										

3

4 5

2

ADC_DIG_GAIN [11:0]	Digital ADC Path Gain. (Default = 12'h40	00, unity gain)
	Format: 2's complements number with for	ormat = 2.10
	Example:	
	ADC_DIG_GAIN [11:0] = 12'h5A6,	Gain = + 3 dB
	ADC_DIG_GAIN [11:0] = 12'h400,	Gain = 0 dB
	ADC_DIG_GAIN [11:0] = 12'h2D6,	Gain = - 3 dB

### 8.20.4 AC_DACG, LC_DACG – Air/Line CODEC DAC Gain.

Addres	SS	Access Mode	Value At Res	et	Nomin	al Value		
0x144~0x14 0x154~0x15	. ,	R/W	0x0400					
Bit7	Bit6	Bit5	Bit4		Bit3	Bit2	Bit1	Bit0
2	50	1 So				DAC_DI	G_GAIN[11:8]	
	N	2.52	DAC_DIG_	_GAI	N[7:0]			



DAC_DIG_GAIN [11:0]	Digital DAC Path Gain. (Default = 12'h40 Format: 2's complements number with fo Example:	
	DAC_DIG_GAIN [11:0] = 12'h5A6, DAC_DIG_GAIN [11:0] = 12'h400,	Gain = + 3 dB Gain = 0 dB
	DAC_DIG_GAIN [11:0] = 12'h2D6,	Gain = - 3 dB
8.20.5		
8.20.6		

### 8.21 RINGER TONE GENERATOR

The ringer tone will be generated while an incoming call occurred. There are two tone signals can be mixed to the speakerphone driver output. This subsection describes the Ringer Tone Generator with the PWM (Pulse Width Modulation) format.

#### **Ringer tone generator (PWM) specification:**

- Tone Channel Number = 2
- Tone Volume Step = 32
- Tone Frequency Range = 93Hz~24KHz

$$Frequency = \frac{12.288M}{16 \times N \times 32} Hz \qquad N = 1 \sim 256$$

The tone frequency/volume control signal path is shown as Figure 8-31 Ringer Tone Generator Block

nuvoTon

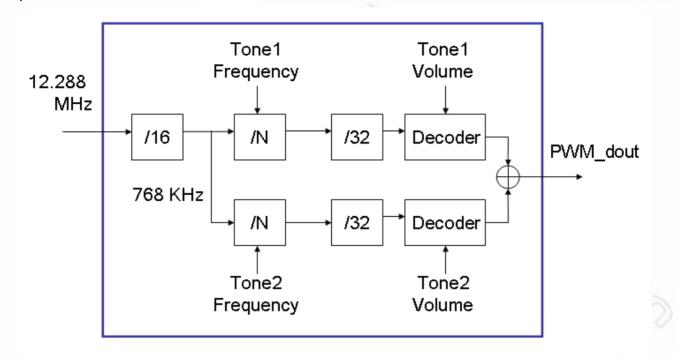



Figure 8-31 Ringer Tone Generator Block

### 8.21.1 PWM Clock

Address	3	Acc	ess Mode	Value At Reset	Nominal	Value		
0x1A0			R/W	0x00				_
Bit 7	Bit	6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWM CLK ON	Rese	rved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved

PWM CLK ON

PWM Operation Clock Enable.  $1 = \text{Enable} \quad 0 = \text{Disable}$ --- Set this bit will enable PWM operation clock. Note: Before disable this bit, the tone_on1 (0x1A2: BIT [7]) and

tone_on2 (0x1A4 BIT [7]) must be disable first.

8.21.2 PWM Tone1 Control

### nuvoTon

Address	6	Acc			Nomina	l Value		
0x1A2			R/W	0x00		No.		
Bit 7	Bit	6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TONE ON 1	Rese	rved	Reserved		TONE	_VOLUME_	1 [4:0]	

TONE_VOLUME_1 [4:0]TONE 1 Volume setting.<br/>--- There have 32 stage volume of the Tone generator.<br/>--- Set this volume zero will force output mute.TONE ON 1TONE 1 Enable.<br/>Note: This bit can be updated only while PWM CLK ON (0x1A0 BIT<br/>[7]) is active. Besides, if the Ringer what to on/off with a full<br/>frequency cycle, the suggest way is to play one "Zero" volume cycle<br/>before disable the TONE ON.

### 8.21.3 PWM Tone1 Frequency

Address	S	Acc	ess Mode	Value At Rese	t Nominal	Value				
0x1A3			R/W	0x00						
Bit 7	Bit	6	Bit 5	Bit 4	Bit 3	Bit 2	2	Bit 1	Bit 0	
				TONE_FR	EQ_1 [ 7:0]					

TONE_FREQ_1 [7:0]

TONE 1 Frequency setting.

--The Ringer Tone Frequency = 768 /  $[32^{(TONE_FREQ_1+1)}]$  KHz EX: If the TONE_FREQ_1 = 0x4A, then the Ringer Tone 1 output frequency will be 768 /  $[32^{(74+1)}]$  = 320 Hz

### 8.21.4 PWM Tone2 Control

Address	Access Mode Value At Reset Nominal Value		Value				
0x1A4	č.	R/W	0x00				_
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TONE ON 2	Reserved	Reserved		TONE_	_VOLUME_2	[4:0]	

TONE_VOLUME_2 [4:0]

TONE 2 Volume setting.

--- There have 32 stage volume of the Tone generator.

--- Set this volume zero will force output mute.

TONE ON 2TONE 2 Enable.1 = Enable,0 = DisableNote: This bit can be updated only while PWM CLK ON (0x1A0 BIT [7])<br/>is active. Besides, if the Ringer what to on/off with a full frequency cycle,<br/>the suggest way is to play one "Zero" volume cycle before disable the<br/>TONE ON.

#### 8.21.5 PWM Tone2 Frequency

nuvoton

Address	s Ac	cess Mode	Value At Reset	Nominal	Value		
0x1A5		R/W	0x00			No.	15
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
			TONE_FR	EQ_2 [ 7:0]		4	22.0

TONE_FREQ_2 [7:0]

TONE 2 Frequency setting.

---The Ringer Tone Frequency =  $750/[32*(TONE_FREQ_2 + 1)]$  KHz EX: If the TONE_FREQ_2 = 0x4A, then the Ringer Tone 2 output frequency will be 768 /[ 32 * (74+1)] = 320 Hz

### 9. ACOUSTIC PROCESSING BLOCK

The Acoustic possessing block performs a variety of functions to implement the full or half duplex echo cancellation. The ISD61S00 incorporates an Acoustic Echo Cancellation (AEC) block for the microphone and speaker CODEC and a Line Echo Cancellation (LEC) block for the PSTN interface. These blocks are very similar, with the main differences being that the AEC includes an AGC function and has a greater echo cancellation length.

The functions performed by the acoustic processing blocks include:

**Echo Cancellation**: This is an adaptive estimation of the characteristics of the echo path to cancel echo introduced by speaker/microphone acoustic coupling and echo return paths from the environment.

Voice Detection (VD): Decides whether input signal from the far end is an active voice signal by estimating the signal power.

**Double Talk (DT) Detection**: Decides whether input signal from the near end is an active voice signal by estimating the signal power.

AGC: Automatic gain control to provide an optimal level from the microphone input.

Soft Clipping: limits the input signal path to prevent hard saturation of the output.

Acoustic Suppression: Used in half duplex to suppress voice either from the near end or the far end. Noise Suppression: Detects and suppresses noise.

### 9.1 Full/Half AEC Block Diagram

### nuvoTon

Full acoustic echo cancellation unit removes the echo signal inserted by the speaker coupling and space reflections. Half duplex AEC smoothly transitions the acoustic suppressors from one direction to the other based on the power estimations of the voice and double talk detectors. Figure 9-1 illustrates the block diagram of the Full/Half Acoustic Echo Canceller. The line echo cancellation block is similar though has the AGC block replaced by an additional soft clipping gain block (Figure 9-2).

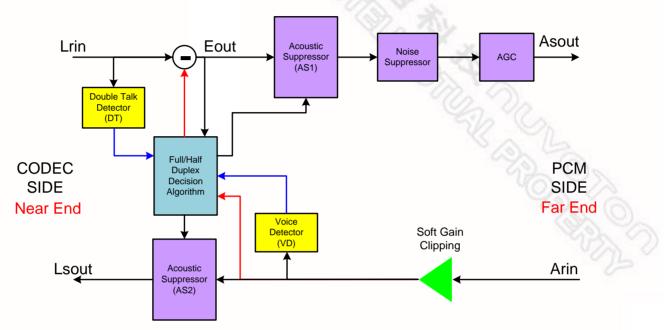
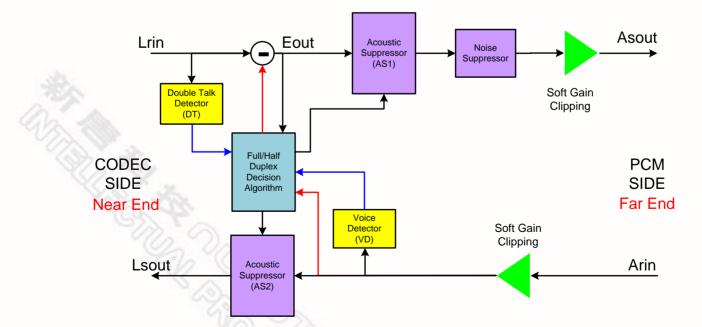
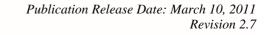




Figure 9-1: Signal flow through the Acoustic Echo Canceller (AEC) in the speech Processor.



- 140 -

Figure 9-2: Signal flow through the Line Echo Canceller (LEC) in the speech Processor.


### 9.2 Control Register Memory Map

nuvoTon

The AEC/LEC block is controlled via configuration registers from that enable control and tuning of the echo cancellation parameters. A summary of the registers is presented in Table 9-1. Read only registers are highlighted in red fill.

Table 9-1 AEC/LEC Control Register Map

		AEC		LEC
	Address	Name	Address	Name
	0x0300	AEC_CONFIG	0x0380	LEC_CONFIG
	0x0301	AEC_RESET	0x0381	LEC_RESET
	0x0302	AEC_EC_BELTA	0x0382	LEC_EC_BELTA
	0x0303	AEC_AS_COEFF	0x0383	LEC_AS_COEFF
	0x0304	Reserved	0x0384	Reserved
		Double Ta	Ik Detector	
	0x0305	AEC_DT_LONG_TC	0x0385	LEC_DT_LONG_TC
	0x0306	AEC_DT_SHORT_TC	0x0386	LEC_DT_SHORT_TC
	0x0307~ 0x0308	AEC_DT_HANGOVER_TIME	0x0387~ 0x0388	LEC_DT_HANGOVER_TIME
	0x0309~ 0x030A	AEC_DT_DV_THRESH	0x0389~ 0x038A	LEC_DT_DV_THRESH
	0x030B~ 0x030C	AEC_DT_LONG_THRESH	0x038B~ 0x038C	LEC_DT_LONG_THRESH
da.	0x030D~ 0x030E	AEC_DT_SHORT_THRESH	0x038D~ 0x038E	LEC_DT_SHORT_THRESH
25	0x030F	AEC_DIVERGENCE	0x038F	LEC_DIVERGENCE
h.		Voice I	Detector	:
1	0x0310	AEC_VD_LONG_TC	0x0390	LEC_VD_LONG_TC
Ľ.	0x0311	AEC_VD_SHORT_TC	0x0391	LEC_VD_SHORT_TC
12	0x0312~ 0x0313	AEC_VD_HANGOVER_TIME	0x0392~ 0x0393	LEC_VD_HANGOVER_TIME
	0x0314~ 0x0315	AEC_VD_DEV_THRESHOLD	0x0394~ 0x0395	LEC_VD_DEV_THRESHOLD
	0x0316~ 0x0317	AEC_VD_LONG_THRESH	0x0396~ 0x0397	LEC_VD_LONG_THRESH



### nuvoTon

	AEC		LEC
Address	Name	Address	Name
0x0318~ 0x0319	AEC_VD_SHORT_THRESH	0x0398~ 0x0399	LEC_VD_SHORT_THRESH
0x031A~ 0x031B	AEC_CUT_OFF_PWR	0x039A~ 0x039B	LEC_CUT_OFF_PWR
0x31C	Reserved	0x39C	Reserved
0x031D	AEC_VD_AVE_TC	0x039D	LEC_VD_AVE_TC
0x031E~ 0x031F	AEC_VD_AVE_THRESH	0x039E~ 0x039F	LEC_VD_AVE_THRESH
	Acoustic Suppressor		Line Suppressor
0x0320	AEC_AS1_BUILD_UP_TIME	0x03A0	LEC_AS1_BUILD_UP_TIME
0x0321- 0x0322	AEC_AS1_MAX_ATTEN	0x03A1~ 0x03A2	LEC_AS1_MAX_ATTEN
0x0323	AEC_AS2_BUILD_UP_TIME	0x03A3	LEC_AS2_BUILD_UP_TIME
0x0324~ 0x0325	AEC_AS2_MAX_ATTEN	0x03A4~ 0x03A5	LEC_AS2_MAX_ATTEN
0x0326~ 0x0327	Reserved	0x03A6~ 0x03A7	Reserved
	Noise	Suppressor	
0x0328	AEC_NS_POWER_ATTACK_TC	0x03A8	LEC_NS_POWER_ATTACK_TC
0x0329	AEC_NS_ATTEN_TC	0x03A9	LEC_NS_ATTEN_TC
0x032A~ 0x032B	AEC_NS_ACTIVE_THRESHOLD	0x03AA~ 0x03AB	LEC_NS_ACTIVE_THRESHOLD
0x032C~ 0x032D	Reserved	0x03AC~ 0x03AD	Reserved
			Soft Clipping on DT Side
0x0330	Reserved	0x03B0	LEC DT SC CTRL
0x0331	Reserved	0x03B1	LEC_DT_SC_NORMAL_INDEX
0x0332	Reserved	0x03B2	LEC_DT_SC_LOW_INDEX
	Reserved	0x03B3~ 0x03B4	LEC_DT_SC_THRESH

### ηυνοτοη

	AEC		LEC
Address	Name	Address	Name
0x0335	Reserved	0x03B5	LEC_DT_SC_POWER_ATTACK_
0x0336	Reserved	0x03B6	LEC_DT_SC_GAIN_TC
0x0337	Reserved	0x03B7	Reserved
	Soft Clippin	g on VD Side	
0x0338	AEC_VD_SC_CTRL	0x03B8	LEC_VD_SC_CTRL
0x0339	AEC_VD_SC_NORMAL_INDEX	0x03B9	LEC_VD_SC_NORMAL_INDEX
0x033A	AEC_VD_SC_LOW_INDEX	0x03BA	LEC_VD_SC_LOW_INDEX
0x033B~ 0x033C	AEC_VD_SC_THRESH	0x03BB~ 0x03BC	LEC_VD_SC_THRESH
0x033D	AEC_VD_SC_POWER_ATTACK_TC	0x03BD	LEC_VD_SC_POWER_ATTACK_
0x033E	AEC_VD_SC_GAIN_TC	0x03BE	LEC_VD_SC_GAIN_TC
0x033F	Reserved	0x03BF	Reserved
	DT Side Po	wer Monitor	1022
0x0340~ 0x0341	AEC_DT_SHORT_TERM_POWER	0x03C0~ 0x03C1	LEC_DT_SHORT_TERM_POWER
0x0342~ 0x0343	AEC_DT_LONG_TERM_POWER	0x03C2~ 0x03C3	LEC_DT_LONG_TERM_POWER
0x0344~ 0x0345	AEC_DT_POWER_DEVIATION	0x03C4~ 0x03C5	LEC_DT_POWER_DEVIATION
0x0346	AEC_DT_ACTIVE	0x03C6	LEC_DT_ACTIVE
0x0347	Reserved	0x03C7	Reserved
	VD Side Po	wer Monitor	
0x0348~ 0x0349	AEC_VD_SHORT_TERM_POWER	0x03C8~ 0x03C9	LEC_VD_SHORT_TERM_POWER
0x034A~ 0x034B	AEC_VD_LONG_TERM_POWER	0x03CA~ 0x03CB	LEC_VD_LONG_TERM_POWER
0x034C~ 0x034D	AEC_VD_POWER_DEVIATION	0x03CC~ 0x03CD	LEC_VD_POWER_DEVIATION
0x034E	AEC_VD_ACTIVE	0x03CE	LEC_VD_ACTIVE
0x034F	Reserved	0x03CF	Reserved
	Signal	Monitor	
0x0350~ 0x0351	AEC_LRIN	0x03D0~ 0x03D1	LEC_ LRIN

- 143 -



ηυνοτοη

	AEC		LEC
Address	Name	Address	Name
0x0352~ 0x0353	AEC_EOUT	0x03D2~ 0x03D3	LEC_EOUT
0x0354~ 0x0355	AEC_ASOUT	0x03D4~ 0x03D5	LEC_ ASOUT
0x0356~ 0x0357	AEC_ARIN	0x03D6~ 0x03D7	LEC_ ARIN
0x0358~ 0x0359	AEC_LSOUT	0x03D8~ 0x03D9	LEC_LSOUT
		F	SATE.
0x035B			
0x035C~ 0x035D			
0x035E~ 0x035F			
	AGC Function		
0x0360	AGC_CTRL	0x03E0	Reserved
0x0361	AGC_INIT_GAIN	0x03E1	Reserved
0x0362	AGC_GAIN_HOLD	0x03E2	Reserved
0x0363	AGC_INC_DEC	0x03E3	Reserved
0x0364	AGC_ATK_DCY	0x03E4	Reserved
0x0365	AGC_GAIN_READ	0x03E5	Reserved
0x0366	AGC_STATE	0x03E6	Reserved
0x0367	AGC_POWER_TC	0x03E7	Reserved
0x0368	AGC_PK_TC	0x03E8	Reserved
0x0369~ 0x036A	AGC_PK	0x03E9~ 0x03EA	Reserved
0x036B~ 0x036F	Reserved	0x03EB~ 0x03EF	Reserved
0x0370~ 0x0371	AGC_TARG_CLIP	0x03F0~ 0x03F1	Reserved
0x0372~ 0x0373	AGC_TARG_HI	0x03F2~ 0x03F3	Reserved
0x0374~ 0x0375	AGC_TARG_LO	0x03F4~ 0x03F5	Reserved



- 144 -

## nuvoTon

	AEC	LEC		
Address	Name	Address	Name	
0x0376~ 0x0377	AGC_TARG_RB	0x03F6~ 0x03F7	Reserved	
0x0378	AGC_NOISE_BIAS	0x03F8	Reserved	
0x0379~ 0x037A	AGC_NOISE_HI	0x03F9~ 0x03FA	Reserved	
0x037B~ 0x037C	AGC_NOISE_LO	0x03FB~ 0x03FC	Reserved	
0x037D~ 0x037F	AGC_NOISE_RB	0x037D~ 0x037F	Reserved	

#### 9.2.1 Threshold and Power Calculation

Many registers in this section are used for setting signal threshold power. Threshold powers are measured in dBFS scale (dB relative to a full scale signal) hence a full scale signal will have a power value of 0dBFS, and all signal levels are referenced to this value. A signal that is half the power of the full scale signal will have a power value of  $20x\log(1/2) = -6.02dBFS$ .

To convert register value to actual dBFS value, follow the scheme below:

If register is 1 byte (0x1B), actual power = 20log(0x1B / 0x7F) dBFS

If register is 2 bytes (0x1BAD), actual power = 20log(0x1BAD / 0x7FFF) dBFS

If register is 3 bytes (0x1BADBE), actual power = 20log(0x1BAD BE/ 0x7FFFF) dBFS

If register is 4 bytes (0x1BADBEEF), actual power = 20log(0x1BADBEEF / 0x7FFFFFF) dBFS

To convert power (in dBFS) into register value, do the following:

If register is 1 byte, Register value = [10 ^ (power / 20)] * 0x7F

If register is 2 bytes, Register value = [10 ^ (power / 20)] * 0x7FFF

If register is 3 bytes, Register value = [10 ^ (power / 20)] * 0x7FFFF

If register is 4 bytes, Register value = [10 ^ (power / 20)] * 0x7FFFFFF

For example, in a 2 bytes register, 0x7FFF corresponds to 0dBFS, 0x3FFF corresponds to -6.02dBFS.

# 9.3 Control Registers

## ηυνοτοη

#### 9.3.1 CONFIG

Addre	Address		Value At Rese	et Nominal	Value		
0x300 (AEC) 0	x380 (LEC)	R/W	0x96				
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	Reserved	DT_NO_ECHO	CUT_THRES_ DIR	NO_UPDATE	EC_EN	AS1_EN	AS_PRIORITY

AEC_CONFIG and LEC_CONFIG are general purpose configuration registers for the echo cancellation unit. Various major functions may be enabled or disabled, depending on the state of each flag. Note that echo cancellation may be disabled, yet the updating process for the filter coefficients may remain enabled.

AS_PRIORITY	In half duplex and relative mode, when both VD and DT paths are active, determines which signal path has priority. =1, VD_Active has first priority and AS1 will be active. =0, DT_Active has first priority and AS2 will be active.
AS1_EN	=1, the acoustic suppression 1 (AS1) function will be enabled. =0, disable
	Note: Acoustic suppressor AS2 only active in half duplex mode (EC_BELTA[5]=1)
EC_EN	Enables adaptive filter echo cancellation. =1, enable =0, disable
NO_UPDATE	<ul><li>=1, the echo cancellation filter parameters will not be updated</li><li>=0, echo cancellation parameters continuously adapt.</li></ul>
CUT_THRES_DIR	Cut-off threshold direction: =1, the cut off power is applied on the DT side. =0, the cut off power is applied on the VD side. Cut off power is used for power estimation algorithm, defined at reg0x31A and reg0x38A
DT_NO_ECHO	<ul> <li>=1, double talk power estimation is based on output power after echo cancellation</li> <li>=0, double talk power estimation detection based on power before echo cancellation</li> </ul>

#### 9.3.2 RESET

	Address		Access Mode	Value At Rese	t Nominal	Value		
	0x301 (AEC) 0x381 (LEC)		R/W	0xE8 / 0xA8				-
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
301	BYPASS	SF	PEEDUP	ALEC RESET	POWER DOWN	RES_COEFF MEM	RES_POW MEM	RES_AIR MEM
381	BYPASS	RESET_F SH	INI LEC_8M	S Reserved	POWER DOWN	RES_COEFF MEM	RES_POW MEM	RES_AIR MEM
	RES_AIR M	EM	Resets the v	voice sample me	emory used i	n Echo Canc	eller.	
	RES_POW	MEM	Reset the	oower (channe	model erro	or history) m	nemory used	d in Echo

M Reset the power (channel model error history) memory used in Echo Canceller.

- 146 -

Flushing the power and voice sample memories will remove the

## ηυνοτοη

Address	Access Mode	Value At Reset	Nominal Value
Address			Nominal value
	conversation	•	
RES_COEFF MEM	conversation	FIR coefficient (c history and wil pe recalculated fr	prompt the fill
POWER DOWN		C / LEC clock with peech signal will	
ALEC RESET	While program	mmed with "1", A	EC / LEC will res
SPEEDUP	Sets AEC coe	efficient update s	peed.
	= 00, sets AE	C tail length to 3	2ms with normal
	= 01, sets AE	C tail length to 6	4ms with normal
	= 10, sets AE	C tail length to 3	2ms with fast up
	= 11, sets AE	C tail length to 3	2ms and automa
BYPASS	When progra	mmed with "1", s	beech signal will
LEC_8MS	= 1, sets LEC	tail length to 8m	S.
	= 0, sets LEC	tail length to 4m	s.
RESET_FINISH	•	Vill go high afte l, or RESET POV	•

## 9.3.3 EC_BELTA

Addre	ess	Access Mode	Value At Reset	Nominal	Value		
0x302(AEC) 0	x382(LEC)	R/W	0x03				
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
NS_ENABLE	DT_VD_IDL	HALF DUPLE	ABSOLUTE		EC_B	ELTA	

EC_BELTA	EC_BELTA is the echo cancellation update gain and is used to control the rate of change of the echo cancellation filter coefficients. Lowering the value of this configurable constant will increase the inertial delay present in the channel modeling logic. Raising the value of this constant will reduce this inertial delay. Values significantly different from the nominal value for this field will cause the channel modeling algorithm to exhibit instability. In such a situation any echo present in the channel will not be removed.
ABSOLUTE	<ul> <li>=1, Absolute mode: the Double Talk detection algorithm is based on absolute value of power on the DT side.</li> <li>=0, Relative mode: the Double Talk detection algorithm is based on difference of signal power between the DT side and the VD side depending on the setting of DT_COMPARE_DB register in 0x303.</li> </ul>
HALF_DUPLEX	<ul> <li>=1, EC will enter half-duplex mode and acoustic suppressor2 (AS2) will be enabled.</li> <li>=0, EC will enter full-duplex mode and acoustic suppressor2 (AS2) disabled.</li> </ul>
DT_VD_IDLE	=1, AS2 will be active when no energy is detected in DT and VD channels.
	Publication Release Date: March 10, 2011

Revision 2.7

## nuvoTon

Address	Access Mode	Value At Reset	Nominal Value
	PS: This fund	ction is only applic	able to half-duplex mode
NS_ENABLE	=1, the noise	suppressor is en	abled
	=0, bypass th	ne noise suppress	or

#### 9.3.4 AS_COEFF

	Addre	SS	Access Mode	Value At Reset	Nominal	Value		
	0x303(AEC) 0	x383(LEC)	R/W	0x14, 0x04		25	To	
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
303	SH_PWR_SE AVE_PWF		_S SH_PWR_E B	N DT_BUF_ENB		DT_COM	PARE_DB	
383	SH_PWR_SE L	AVE_PWR E	_S SH_PWR_E B	N BOTH_MOD E		DT_COM	PARE_DB	
	SH_PWR_S AVE_PWR_ SH_PWR_E DT_BUF_EN	SE NB	1: Echo cano 0: Echo cano 1: Average A 0: Average A 1: Disables e 0: Default ex 1: AEC DT	ower calculatio cellation uses S cellation uses A xir Power calcul xir Power calcul exponential calcu ponential calcu relative mode c EC DT relative	hort Term Ai verage Air P ation uses z ation uses s ulation for S lation for Sh compares Lii	ir Power to c ower to calc ero extensio ign extension hort Term Air ort Term Air ne power wi	alculate inpu ulate input p n. n. ir Power. Power. th previous 3	ower. 32 samples
	DT_COMPA	RE_DB	In relative m 0000: RATIC 0001: RATIC	e mode compar ode, if (line pow	ver) > (air po 3)			
	BOTH_MOD		0100: RATIC  1111: RATIC 1: AEC and relative mod 0: AEC and	<ul> <li>D = 0.375 (-8.5d)</li> <li>D = 0.500 (-6dB)</li> <li>D = 1.875 (5.46d)</li> <li>LEC DT detection conduction conduction conduction conduction conduction conduction conduction conductions (2000)</li> <li>LEC DT detection conduction conductin conduction conduction conductin conductin conduction conducti</li></ul>	) IB) tor only acti ditions are m tor uses eith	net.		

## 9.4 Double Talk Detector Control Registers

#### nuvoton

#### 9.4.1 Function

Double talk detector is used to decide whether the signal from the near end is an active voice signal by estimating its signal power. Signal is deemed active if the short term acoustic power exceeds a predetermined threshold or if the short term acoustic power exhibits sudden variations under "absolute" mode, or the relative signal level compared with the signal from far end site in non-absolute mode.

The echo cancellation algorithm will stop adapting to the acoustic characteristics when voice is detected on the near end. If speech is being carried over both near end and far end then the double talk condition occurs. In this situation the acoustic interface signal can exhibit echo-like characteristics and acoustic modeling must be halted.

#### 9.4.2 DT_LONG_TC

Addre	SS	Access Mode	Value At Reset	Nominal	Value		
0x305(AEC) 0	x385(LEC)	R/W	0x09			00	15
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Reserved	Reserved	Reserved	Reserved		DT_LO	NG_TC	-

The DT (Double Talk) long term power estimation's attacking time constant. This field defines the inertial delay utilized for the long term power estimation at DT side. Raising the value of this field reduces the inertia and will make the estimation more responsive while lowering the field will cause the power estimation algorithm to be less responsive to bursts of energy on the acoustic side.

#### 9.4.3 DT_SHORT_TC

DT_LONG_TC

Address		Access Mode	Value At Reset	Nominal	Value		
0x306(AEC) 0x386(LEC)		R/W	0xBB				_
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	DT_SI	HORT_TC_H			DT_SHO	RT_TC_L	

DT_SHORT_TC

The DT (Double Talk) short term power estimation's attacking time constant. This field defines the inertial delay utilized for the short term power estimation at DT side. Raising the value of this field reduces the inertia and will make the estimation more responsive while lowering the field will cause the power estimation algorithm to be less responsive to bursts of energy on the acoustic side.

DT_SHORT_TC_H

When input signal power is higher than the estimated short term power, DT_SHORT_TC_H is used for the subsequent power estimation. When input signal power is lower or equal to the estimated short term

DT_SHORT_TC_L power, DT_SHORT_TC_L is used for the subsequent power estimated short to



#### 9.4.4 Double Talk Detector Parameters

Addre	SS	Access Mode	Value At Reset	Nominal	Value		
0x307-0x30 0x387-0x38		R/W	See Below				
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
			DT_HANGOVER_	TIME[15:8]	2, 24		
			DT_HANGOVER	_TIME[7:0]	NO.	25	
			DT_DV_THRE	S[15:8]	Yes	to	
			DT_DV_THR	ES[7:0]	1	m.Dr	
			DT_LONG_THR	ESH[15:8]		56 0	26
			DT_LONG_THR	ESH[7:0]		NO.	15
			DT_SHORT_THF	RESH[15:8]		5	76
			DT_SHORT_TH	RESH[7:0]		1	20
DT HANGO			d defines the ine				•

DT_HANGOVER_TIME (Default 0x0020)	This delay (in units of 125us) is applied after the loss of double talk detection. If double talk does not reappear during this time then the echo cancellation unit will revert back to acoustic training mode.
DT_DV_THRESH * (Default 0x1998)	Defines the deviation power threshold of double talk detector. This value is used to determine the DT active/inactive condition.
DT_LONG_THRESH * (Default 0x0000)	Minimum power level that constitutes speech over the DT side, as measured by the long term power estimation algorithm.
DT_SHORT_THRESH * (Default 0x1010)	Minimum power level that constitutes speech over the DT side, as measured by the short term power estimation algorithm.

* See 9.2.1Threshold and Power Calculation

#### 9.4.5 DIVERGENCE

Addres		Access Mode R/W	ode Value At Reset Nominal Value 0x0F		Value			
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	2	Bit 1	Bit 0
DIVERGENCE	Reserved	Ved DIVERGENCE THRESHOLD						
DIVERGENCE THRESHOLDWhen the signal power ratio Eout/Lrin > DIVERGENCE_THRESHOLD (see Figure 9-1), a divergence condition is detected. When a divergence condition is detected, echo cancellation coefficients are cleared and 								divergence leared and n unsigned epresenting al 0)



#### 9.5 Voice Detector Control Registers

#### 9.5.1 Function

The acoustic modeling algorithm requires a measure of the instantaneous speech power on the Far End of the echo canceller (this is termed the VD Voice Detect side). To detect the double talk condition an estimate of the long term average power of the VD side is also required.

#### 9.5.2 VD_LONG_TC

Addre	SS	Access Mode	Value At Reset	Nominal	Value		
0x310(AEC) 0	x390(LEC)	R/W	0x09			Con Do	
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Reserved	Reserved	Reserved	Reserved	VD_LONG_TC			

VD_LONG_TC

VD long term average power estimation's attacking time constant. This field defines the inertial delay utilized for the long term power estimation of VD. Raising the value of this field reduces the inertia and will make the estimation more responsive whilst lowering the field will cause the power estimation algorithm to be less responsive to bursts of energy on the VD side.

#### 9.5.3 VD_SHORT_TC

Addre	ess	Access Mode	Value At Reset	Nominal	Value		
0x311(AEC) 0	x391(LEC)	R/W	0xBB				
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	VD_SI	HORT_TC_H			VD_SHO	RT_TC_L	

VD_SHORT_TC VD short term power average estimation attacking time constant. This field defines the inertial delay utilized for the short term power estimation of VD. Raising the value of this field reduces the inertia and will make the estimation more responsive whilst lowering the field will cause the power estimation algorithm to be less responsive to bursts of energy on the VD side.

VD_SHORT_TC_H When input signal power is higher than the estimated short term power, VD_SHORT_TC_H is used for the subsequent power estimation. When input signal power is lower or equal to the estimated short term

VD_SHORT_TC_L When input signal power is lower or equal to the estimated short term power, VD_SHORT_TC_L is used for the subsequent power estimation.

#### 9.5.4 Voice Detector Parameters

	Address		Access Mode	Value At Reset	Nominal	Value		
	0x312-0x31B(AEC) 0x392-0x39B(LEC)		R/W	See Below				_
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
2	2 VD_HANGOVER_TIME[15:8]							

## nuvoton

Address	Access Mode	Value At Reset	Nominal Value							
		VD_HANGOVER_1	FIME[7:0]							
		VD_DEV_THRESH	OLD[15:8]							
	VD_DEV_THRESHOLD[7:0]									
		VD_LONG_THRE	SH[15:8]							
		VD_LONG_THRE	SH[7:0]							
		VD_SHORT_THRE	SH[15:8]							
		VD_SHORT_THR	ESH[7:0]							
		CUT_OFF_POWE	R[15:8]							
		CUT_OFF_POW	ER[7:0]							

VD_HANGOVER_TIME (Default 0x0009)	This field defines the inertial delay of the voice detection algorithm for VD side. Following the detection of the speech on the VD side there is a programmable inertial delay (in units of 125us) following the disappearance of the speech signal. For the duration of this delay period the speech is assumed to remain. If speech does not reappear during this window then the echo cancellation unit will revert back to acoustic training mode.
VD_DEV_THRESHOLD * (Default 0x1998)	Defines the deviation power threshold of VD. This value is used to determine VD active/inactive condition.
VD_LONG_THRESH * (Default 0x1998)	Defines the minimum power level that constitutes speech over the VD side, as measured by the long term power estimation algorithm.
VD_SHORT_THRESH * (Default 0x1038)	Minimum power level that constitutes speech over the VD side, as measured by the short term power estimation algorithm.
CUT_OFF_POWER * (Default 0x1998)	Configurable bias registers for power estimation. This field defines the zero reference for the power estimation algorithm.

* See 9.2.1Threshold and Power Calculation

### VD_AVE_TC

Addre	ess	Access Mode	Value At Reset	Nominal	Value		
0x31D(AEC) 0	x39D(LEC)	R/W	0x0B				
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Reserved	Reserved	Reserved	Reserved	AVE_SHORT_TC			

AVE_SHORT_TC

Average short term power estimation attacking time constant. This field defines the inertial delay utilized for the average short term power estimation. Raising the value of this field reduces the inertia and will make the estimation more responsive whilst lowering the field will cause the power estimation algorithm to be less responsive to bursts of energy.



#### 9.5.5 VD_AVE_THRESH

	Address		Access Mode	Value At Reset	Nominal	Value				
	0x31E-0x31F(AEC) 0x39E- 0x39F(LEC)		R/W	See Below	1					
	Bit 7 Bit 6		Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
	VD_AVE_THRESH[15:8]									
:	VD_AVE_THRESH[7:0]									

E F

VD_AVE_THRESH * Minimum average power level that constitutes speech over the VD side, as measured by the short term power estimation algorithm.

* See 9.2.1 Threshold and Power Calculation

#### 9.6 AS1 & AS2 Control Registers

#### 9.6.1 Function

The acoustic suppression (AS1& AS2) units will insert configurable attenuation factors into the voice path. The attenuation will switch between a maximum and minimum value depending on the presence or absence of speech on the voice path. When speech is present the attenuation will converge towards the minimum value. When speech is absent the attenuation will converge towards the maximum value. Whether speech is present is decided by the Double Talk Detector (DT) and the Voice Detector (VD). The attenuation factor will not switch abruptly between these two factors but will exponentially converge from one to the other. The suppression units are used in half-duplex mode.

#### 9.6.2 AS1_BUILD_UP_TIME

Addre	Address		Value At Reset	Nominal	Value		
0x320(AEC) 0	x3A0(LEC)	R/W	0x77				
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	AS1_BUILD	D_UP_TIME_PO	S		AS1_BUILD_U	IP_TIME_NEG	

Time constant determining how fast AS1 gain ramps from max to min gain (AS1_BUILD_UP_TIME_POS) and from min to max gain (AS1_BUILD_UP_TIME_NEG). Smaller time constant represents faster change in gain.

#### 9.6.3 AS1_MAX_ATTEN

Address		Access Mode	Value At Reset	t Nominal	Value				
0x321-0x322(AEC) 0x3A1-0x3A2(LEC)		R/W	0x1CA8						
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
AS1_MAX_ATTEN[15:8]									
AS1_MAX_ATTEN[7:0]									
	0x321-0x3 0x3A1-0x3	0x321-0x322(AEC) 0x3A1-0x3A2(LEC)	0x321-0x322(AEC) R/W 0x3A1-0x3A2(LEC)	0x321-0x322(AEC) 0x3A1-0x3A2(LEC)         R/W         0x1CA8           Bit 7         Bit 6         Bit 5         Bit 4           AS1_MAX_A	0x321-0x322(AEC) 0x3A1-0x3A2(LEC)         R/W         0x1CA8           Bit 7         Bit 6         Bit 5         Bit 4         Bit 3           AS1_MAX_ATTEN[15:8]         AS1_MAX_ATTEN[15:8]         AS1_MAX_ATTEN[15:8]	0x321-0x322(AEC) 0x3A1-0x3A2(LEC)         R/W         0x1CA8           Bit 7         Bit 6         Bit 5         Bit 4         Bit 3         Bit 2           AS1_MAX_ATTEN[15:8]	0x321-0x322(AEC) 0x3A1-0x3A2(LEC)         R/W         0x1CA8           Bit 7         Bit 6         Bit 5         Bit 4         Bit 3         Bit 2         Bit 1           AS1_MAX_ATTEN[15:8]		

## nuvoTon

Maximum attenuation value will be utilized by the acoustic suppression algorithm. Actual maximum attenuation =  $20 \times \log (AS1_MAX_ATTEN / 0xFFF)$  (dB). The maximum value of this field (0xFFF) provides an attenuation factor of 1 (0dB – no attenuation). The minimum (0x0000) value provides an attenuation factor of 0.

#### 9.6.4 AS2_BUILD_UP_TIME

					A		
Addre	ess	Access Mode	Value At Reset	alue At Reset Nominal Valu			
0x323(AEC) 0	x3A3(LEC)	R/W	0x77		Sec.	80	
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	AS2_BUILI	D_UP_TIME_POS	S		AS2_BUILD_U	JP_TIME_NEG	

Time constant determining how fast AS2 gain (towards target) ramps from max to min gain (AS2_BUILD_UP_TIME_POS) and from min to max gain (AS2_BUILD_UP_TIME_NEG). Smaller time constant represents faster change in gain.

#### 9.6.5 AS2_MAX_ATTEN

Addre	ss	Access Mode	Value At Reset	:	Nominal	Value			
0x324-0x325(AEC) 0x3A4-0x3A5(LEC)		R/W	0x1CA8						
Bit 7 Bit 6		Bit 5	Bit 4		Bit 3 Bit 2		Bit 2 Bit 1		Bit 0
			AS1_MAX_A		EN[15:8]				
			AS1_MAX_	ATT	EN[7:0]				

Maximum attenuation value will be utilized by the acoustic suppression algorithm. Actual maximum attenuation =  $20 \times \log (AS1_MAX_ATTEN / 0xFFFF) (dB)$ . The maximum value of this field (0xFFFF) provides an attenuation factor of 1 (0dB – no attenuation). The minimum (0x0000) value provides an attenuation factor of 0.

#### 9.7 Noise Suppressor Registers

#### 9.7.1 Function

1 2

Noise suppressor is used to attenuate noise from microphone/line to reduce residue echo from the near end. If power of near-end noise ( $P_{NS}$ ) < NS_ACTIVE_THRESHOLD, then Noise Suppressor will attenuate near-end signal by (NS_INDEX+1) dB. The parameters NS_FALL_TC and NS_RISE_TC control gain attack and release speeds.

- 154 -

Publication Release Date: March 10, 2011 Revision 2.7



#### 9.7.2 **NS POWER ATTACK TC**

Addre	SS	Acce	ss Mode	Value At Reset	Nominal	Value		
0x328(AEC) 0	x3A8(LEC)	F	R/W	0xBB				
Bit 7	Bit	6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	NS_POV	VER_ATT/	ACK_TC[3:0]			NS_INDEX	([3:0]	
NS_INDEX			Defines t (NS_INDE)		f the nois	se suppres	ssor Gain	= -
NS_POWE	R_ATTAC	K_TC	signal tha suppressio Raising the estimation	defines the ti at enters th n is active if a value of this more response mation algori	e nose s noise power field reduce sive whilst lo	uppressor r is less tha s the inertia owering the f	module. n noise thre and will ma ield will cau	Noise eshold. ake the use the

#### 9.7.3 NS ATTEN TC

Address	S	Acc	ess Mode	Value At Reset	Nominal	Value	Bit 1 =_TC [3:0]	
0x329(AE 0x3A9(LE			R/W	0xBB				
Bit 7	Bit	6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	N	S_FALL	_TC [3:0]			NS_RIS	E_TC [3:0]	

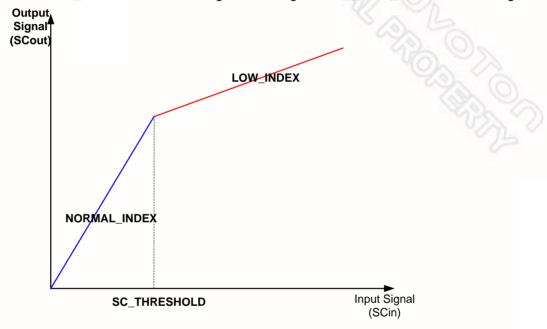
energy on the input of the noise suppressor.

NS_RISE_TC[3:0] Define the time constant of noise suppressor gain transition from the gain specified by NS INDEX to 0dB. Larger value results in faster transition.

Define the time constant of Noise suppressor gain transition from 0dB to NS_FALL_TC[3:0] the gain specified by NS_INDEX. Larger value results in faster transition.

#### NS_ACTIVE_THRESHOLD 9.7.4

	Address	3	Acc	ess Mode	Value At Rese	t	Nominal	Value			
	0x32A-0x32B 0x3AA-0x3AB	` '		R/W	0x03E8						
Ż	Bit 15 Bit 14		Bit 13	Bit 12		Bit 11 Bit 1		0	Bit 9	Bit 8	
А	E.	Xs.			NS_ACTIVE_THRESHOLD[15:8]						
В					NS_ACTIVE_T	HRE	SHOLD[7:0]	]			


When signal energy is less than NS_ACTIVE_THRESHOLD the noise suppressor function will activate. See 9.2.1Threshold and Power Calculation



#### 9.9 Soft Clip (SC) Control Registers

#### 9.9.1 Functional Description

The echo cancellation cannot operate effectively on non-linear clipped signals. To reduce non-linearity due to signal clipping, a soft clipping function is available. Soft clipping control is available in both signal path directions on the LEC and on the output path of the AEC. Soft Clip gain is control by SC_NORMAL_INDEX and SC_LOW_INDEX. Normal Soft Clip gain is SC_NORMAL_INDEX. If input signal level is greater than SC_THRESHOLD the SC gain is changed to SC_LOW_INDEX for reducing



clipping distortion.

#### 9.9.2 SC_CTRL

	Address	5	Access Mode		Value At Reset	Nominal	Nominal Value			
Ľ	0x338 (AEC VD) 0x3B0(LEC DT) 0x3B8(LEC VD)			R/W	0x00					
	Bit 7 Bit		6	Bit 5 Bit 4		Bit 3	Bit 2	2	Bit 1	Bit 0
338, 3B8	Reserved	Rese	rved	Reserved	Reserved	Reserved	Reserv	ved	ADAPTIVE_TH RES	SC_EN
3B0	Reserved Reserved		rved	Reserved	Reserved	Reserved	Reserved		Reserved	SC_EN

SC_EN

=1, Enable the soft clipping function.

=0, Disable the soft clipping function.



	Address	Access Mode	Value At Reset	Nominal Value	
AD	APTIVE_THRES	=1, If DT long t	erm line power >	DT short term the	reshold, DT short term

\DAPTIVE_THRES =1, If DT long term line power > DT short term threshold, DT short term threshold automatically increases to same level as DT long term line power.

#### 9.9.3 SC_NORMAL_INDEX

Address	S	Acc	ess Mode	Value At Reset	Nominal	Value		
0x339 (AEC 0x3B1(LEC 0x3B9(LEC	DT)		R/W	0x00		9)	20	
Bit 7	Bit	6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Reserved				G	GAIN_INDEX[6:0	)]	S D	15

GAIN_INDEX[6:0]

This value sets the gain in the normal gain region of the soft clip transfer function. Gain selection range is shown in Table 9-2.

#### Table 9-2 SC Gain Table

GAIN_INDEX[6:0] HEX Value	Gain	GAIN_INDEX[6:0] HEX Value	Gain
0x00	0 dB (default)	0x7F	- 0.5 dB
0x01	0.5 dB	0x7E	- 1.0 dB
0x02	1.0 dB	0x7D	- 1.5 dB
0x03	1.5 dB	0x7C	- 2.0 dB
0x04	2.0 dB	0x7B	- 2.5 dB
0x05	2.5 dB	0x7A	- 3.0 dB
0x06	3.0 dB	0x79	- 3.5 dB
0x07	3.5 dB	0x78	- 4.0 dB
0x08	4.0 dB	0x77	- 4.5 dB
0x09	4.5 dB	0x76	- 5.0 dB
0x0A	5.0 dB	0x75	- 5.5 dB
0x0B	5.5 dB	0x74	- 6.0 dB
0x0C	6.0 dB	0x73	- 6.5 dB
0x0D	6.5 dB	0x72	- 7.0 dB
0x0E	7.0 dB	0x71	- 7.5 dB
0x0F	7.5 dB	0x70	- 8.0 dB
0x10	8.0 dB	0x6F	- 8.5 dB
0x11	8.5 dB	0x6E	- 9.0 dB
0x12	9.0 dB	0x6D	- 9.5 dB
0x13	9.5 dB	0x6C	- 10.0 dB
0x14	10.0 dB	0x6B	- 10.5 dB
0x15	10.5 dB	0x6A	- 11.0 dB
0x16	11.0 dB	0x69	- 11.5 dB

Publication Release Date: March 10, 2011 Revision 2.7



0x17	11.5 dB	0x68	- 12.0 dB
0x18	12.0 dB	0x40	Mute

#### 9.9.4 SC_LOW_INDEX

-						1. 1. 1.			
Addres	s	Acc	ess Mode	Value At Rese	t N	lominal	Value		
0x33A (AEC 0x3B2(LEC 0x3BA(LEC	DT)		R/W	0x00				six.	
Bit 7	Bit	6	Bit 5	Bit 4	Bit	: 3	Bit 2	Bit 1	Bit 0
Reserved				0	GAIN_IN	DEX[6:0	)]	22.4	2

GAIN_INDEX[6:0] This value sets the gain in the low gain region of the soft clip transfer function. Gain selection range is shown in Table 9-2.

#### 9.9.5 SC_THRESH

B C

Addre	ess	Access Mode	Value At Rese	t Nominal	Value				
0x3B3-0x3B4	x33B-0x33C(AEC VD) x3B3-0x3B4(LEC DT) x3BB-0x3BC(LEC DT)		0x1000					Z	
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8		
			SC_THRES	HOLD[15:8]					
SC_THRESHOLD[15:8] SC_THRESHOLD[7:0]									

SC_THRESHOLD is used to determine the selection of Soft Clip gain. When the input power is larger than SC_THRESHOLD, SC_LOW_INDEX is used to set gain, otherwise SC_NORMAL_INDEX is used. See 9.2.1Threshold and Power Calculation

#### 9.9.6 SC_POWER_ATTACK_TC

Address	5	Acc	ess Mode	Value At Reset		Nominal	Value			
0x33D(AEC 0x3B5(LEC 0x3BD(LEC	DT)	(D) R/W (T) (D)		0x07						
Bit 7	Bit	6	Bit 5	Bit 4		Bit 3	Bit	2	Bit 1	Bit 0
Reserved			Reserved	Reserved				TC[	3:0]	

This time constant is used to calculate the short term power estimation for soft clipping threshold comparison. Raising the value of this field reduces the inertia and will make the estimation more responsive whilst lowering the field will cause the power estimation algorithm to be less responsive to bursts of energy.



#### 9.9.7 SC_GAIN_TC

Address	S	Acc	ess Mode	Value At Reset	t	Nominal	Nominal Value			
0x33E(AEC 0x3B6(LEC 0x3BE(LEC	DT)		R/W	0x07	8			ň.,		
Bit 7	Bit	6	Bit 5	Bit 4		Bit 3	Bit 2	2	Bit 1	Bit 0
Reserved	Rese	rved	Reserved	Reserved		X	2	TC	3:0]	

When the soft clip gain is switched between normal and low gains, an embedded smoothing function is applied to the gain transition. This time constant controls the smoothing. Larger time constant results in slower transition.

#### 9.10 State Read back Registers

#### 9.10.1 Functional Description

The following registers allow read back of internal parameter measurements to facilitate configuration of echo cancellation blocks.

#### 9.10.2 Power Monitor

	Addre	ess	Ac	cess Mode	Va	alue At Reset	Nominal	Value			
	0x340-0x34 0x3C0-0x3	4E(AEC) CE(LEC)		R		See Below					
	Bit 7	Bit 6		Bit 5		Bit 4	Bit 3	Bit	2	Bit 1	Bit 0
0				1	DT_S	SHORT_TERI	M_POWER[15:	8]			
1					DT_S	SHORT_TER	M_POWER [7:	0]			
2					DT_I	LONG_TERM	LPOWER [15:8	8]			
3					DT_	LONG_TERM	/_POWER [7:0	]			
4					DT_	_POWER_DE	VIATION [15:8]	]			
5					DT	_POWER_DE	EVIATION [7:0]				
6						reserved					DT_ACTIVE
7						reser	ved				
8				,	VD_S	SHORT_TER	M_POWER[15:	8]			
9					VD_S	SHORT_TER	M_POWER [7:	0]			
A					VD_I	LONG_TERM	I_POWER [15:8	8]			
В					VD_	LONG_TERM	/_POWER [7:0	]			
С					VD_	_POWER_DE	VIATION [15:8	]			

Publication Release Date: March 10, 2011 Revision 2.7

## nuvoTon

	Address	Access Mode	Value At Reset	Nominal Value	
D			VD_POWER_DEVI	ATION [7:0]	
Е			reserved		VD_ACTIVE
	SHORT_TERM_POW	ER Short 1	erm power estima	ate on DT/VD side	
	LONG_TERM_POWE	R Long t	erm power estima	te on DT/VD side.	
	POWER_DEVIATION	Power	deviation estimat	ion on DT/VD side.	
	DT_ACTIVE	1: Dou	ble-talk activity		
	VD_ACTIVE	1: Void	e Detection activi	ty.	

## 9.10.3 Signal Monitor

	Addre	SS	Access Mode	Value At Reset	Nominal	Value			
	0x350-0x35 0x3D0-0x3E	9(AEC) 09(LEC)	R	See Below			N	0	
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
0				LRIN[	15:8]				
1				LRIN	[7:0]				
2				EOUT	[15:8]				
3				EOUT	[7:0]				
4	ASOUT[15:8]								
5		ASOUT[7:0]							
6				ARIN[	15:8]				
7				ARIN	[7:0]				
3				LSOUT	[15:8]				
Э				LSOU [.]	T[7:0]				
	LRIN		Signal P	CM value at Li	in				
	EOUT	EOUT Signal PCM value at Eout							
	ASOUT		Signal P	CM value at A	sout				
	ARIN		Signal P	CM value at A	rin				
	LSOUT		Signal P	CM value at L	sout				

See Figure 9-1: Signal flow through the Acoustic Echo Canceller (AEC) in the speech Processor.

9.11

## nuvoTon

#### 9.12 Automatic Gain Control

AGC function will automatically adjust the gain to the target voice level specified by the parameters AGC_TARG_HI and AGC_TARG_LO. The actions of the AGC out of the target range are tuned by the parameters AGC_NOISE_HI, AGC_NOISE_LO, GAIN_MAX, GAIN_MIN and the time constant parameters. The operation of the AGC is shown in the figure below.

	Fast Decreasing Region	Voice Power is higher than AGC_TARGET_CLIP <ul> <li>the AGC is in the Fast Decreasing Region</li> <li>the gain of AGC will fast decrease to decreasing region 2</li> </ul>	
			— AGC_TARG_CLIP
_		Voice Power is between AGC_TARGET_CLIP and AGC_TARGET_HI	
	Decreasing Region 2	the AGC is in the Decreasing Region 2	
C_ATK	Rogion 2	the gain of AGC will decrease to target region	
			— AGC_TARG_HI
/		Voice Power is between AGC_TARGET_HI and AGC_TARGET_LO	
	Target Region	the AGC is in the Target Region	
AGC_DO	CY	<ul> <li>the gain of AGC will increase to TARGET_THRESHOLD_HIGH or GAIN_MAX</li> </ul>	
·			
~	Increasing	Voice Signal is active	
	Region 1	the AGC is in the Increasing Region	
AGC_IN	IC	<ul> <li>the gain of AGC will increase to TARGET_THRESHOLD_LOW or GAIN_MIN</li> </ul>	
			-AGC NOISE HI
	Hysteresis Region	Voice Signal becomes active if input power increases above AGC_NOISE_HI	
	Region	Voice Signal becomes inactive if input power drops below AGC_NOISE_LO	-AGC NOISE LO
		Voice Signal is inactive	/.001010L_L0
SC_DEC	Decreasing Region 1	the AGC is in the Decreasing Region	
	Region	the gain of AGC will decrease to initial gain	

Figure 9-3 AGC Operation regions.

The AGC is activated when the signal short term energy increases above AGC_NOISE_HI. It stays active until the signal short term power drops below AGC_NOISE_LO.

Once activated, the AGC enters the Increasing Region 1. This region increases the gain with a time constant AGC_INC until either signal enters the target region or GAIN_MAX gain is reached. The goal of this region is to provide a quick reaction to voice energy and supply some gain.

Once into the target region, the gain is incremented with a time constant AGC_DCY to a maximum gain of GAIN_MAX, goal of this region is for slower response to keep the signal in target region. If signal amplitude goes above AGC_TARG_HI, the AGC goes into Decreasing Region 2.

In Decreasing Region 2, gain is gradually decreased with a time constant of AGC_ATK to pull signal back into the target region.

If a large signal is applied suddenly, the AGC signal could shoot above AGC_TARG_CLIP. In this case the AGC will enter fast decreasing region to quickly reduce its gain.

If the signal is small enough that it is below the AGC_NOISE_LO, the AGC treats the signal as noise and will not try to gain it up. The AGC will stay in decreasing region 1 and gain will be gradually decremented by with a time constant of AGC_DEC down to the initial gain.



In addition to the above, the gain changing action of the AGC can be controlled by the HOLD time. The hold timer is reset whenever the AGC moves from the Decreasing region to the Target region. If a hold time is selected, no gain changes will occur until after this until target time is reached. This has the effect of keeping the gain constant rather than "hunting" for an ideal gain.

#### 9.12.1 AGC_CTRL

Addres 0x0360		ess Mode R/W	Value At Reset 0x00	Nominal	Value				
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
AGC_EN	AGC_ONLY		GAIN_MIN		GAIN_MAX				
AGC_EN		Set 1: Er	able AGC. Se	et 0: Disable	AGC	N.	9h		
AGC_ONL	Y	Set 1: Th	e AEC block is	bypassed a	and AGC ope	erates from A	EC input.		
GAIN_MINRefer to Figure 9-3. When the peak of AGC output is smaller than AGC and greater than AGC_NOISE_HI, the AGC is in Increasing Region 1. gain will increase up to GAIN_MIN 000: The low gain is 20*log1.25², which is 3.9dB. 001: The low gain is 20*log1.50², which is 7.0dB. 010: The low gain is 20*log1.75², which is 9.7dB. 011: The low gain is 20*log2.00², which is 12.0dB. 100: The low gain is 20*log2.25², which is 14.1dB. 101: The low gain is 20*log2.50², which is 15.9dB. 110: The low gain is 20*log2.75², which is 17.6dB. 									
GAIN_MA	ζ	greater th increase 000: The 001: The 010: The 011: The 100: The 101: The 110: The	Figure 9-3. Who nan AGC_TARG up to GAIN_M/ high gain is 20 high gain is 20	G_LO, the A AX. *log1.25 ² , w *log1.50 ² , w *log2.00 ² , w *log2.25 ² , w *log2.50 ² , w *log2.75 ² , w	AGC is in Tai which is 3.9d which is 7.0d which is 9.7d which is 12.0 which is 14.1 which is 15.9 which is 17.6	rget Region. ⁻ B. B. dB. dB. dB. dB. dB.			

The purpose of having Increasing Region 1 and Target Region is to have different converge rates for different levels of input signal. ALL SOLOGIA



#### 9.12.2 AGC_INIT_GAIN

Address 0x0361	-		ss Mode	Value At Reset 0x88	Nominal	Value		
Bit 7	Bit 6		Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IG				AG	C_INITIAL_GA	IN		
AGC_INITI	AL_GAIN	Т	hus actual	initial gain wh initial gain = 2	0 x log (AGC	_INITIAL_G	AIN / 0x08) (	
IG		lr	hitial Gain b	oit: if set to 1 th	ien AGC whe	en disabled i	esets to	

AGC_INITIAL_GAIN

#### 9.12.3 AGC_GAIN_HOLD

Address	3	Acce	ess Mode	Value At Reset	Nominal	Value		
0x0362			R/W	0x00			1	(0)
Bit 7	Bit	6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	AGC_H	HOLD			А	GC_HOLD_CN	IT	3
AGC_HOLI				old time = (2^A	_ ,			

AGC_HOLD_CNT Together with AGC_HOLD determines how long the AGC will hold gain constant after entering target region before increasing gain. The hold time is AGC_HOLD * AGC_HOLD_CNT.

#### 9.12.4 AGC_INC_DEC

Address	3	Acc	ess Mode	Value At Reset	Nominal	Value		
0x0363			R/W	0x00				
Bit 7	Bit	6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Reserved			AGC_INC		Reserved		AGC_DEC	

AGC_INC Determines the time constant at which gain increases when AGC is in Increasing Region 1. The increase time is (2^AGC_INC) * 4us. AGC_DEC Determines the time constant at which the gain reduces when AGC is in

AGC_DEC Determines the time constant at which the gain reduces when AGC is in Decreasing Region 1. The decrease time is (2^AGC_DEC) * 4us.

#### 9.12.5 AGC_ATK_DCY

Address	s A	ccess Mode	Value At Reset	Nominal	Value		
0x0364	222	R/W	0x00				
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Reserved		AGC_DCY Reserved AGC_ATK					
AGC_DCY		AGC is in Ta	decay time co rget Region. e is (2^AGC_E			U U	eases when

AGC_ATK Controls the attack time constant: that is how fast the gain decreases when



Address Access Mode Value At Reset Nominal Value

AGC is in Decreasing Region 2.

The ATK time is (2^AGC_ATK) * 16us per gain step.

#### 9.12.6 AGC_GAIN_READ

Address	6	Acc	ess Mode	Value At Reset	Nomina	I Value		
0x0365			R	0x00		5.7	Sec.	
Bit 7	Bit	6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
				AGC_GA	IN_READ			

AGC_GAIN_READ Returns the current AGC gain in unsigned 4.4 format. Actual gain =  $20 \times \log 100$ (AGC_GAIN_READ / 0x10) dB

#### 9.12.7 AGC_STATE

.12.7 AGC	_STA	TE						
Address		Acce	ess Mode	Value At Rese	t Nominal	Value		
0x0366	0x0366		R	0x00				189
Bit 7	Bit 6		Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
VOICE ACTIVE	HOLD	D_END	LT_MAX	FAST_DEC	INC	DCY	DEC	АТК
VOICE ACT HOLD_ENE LT_MAX INC DCY DEC ATK FAST_DEC	)		Indicates A Indicates A Gain is inc Gain is inc Gain is de Gain is de	ergy level is high AGC hold time AGC gain is lea reasing. AGC reasing. AGC creasing to un creasing. AGC creasing. AGC	has reached ss than GAIN is in Increasi is in Target I it gain. AGC is in Decrea	d 0. I_MAX. ing Region Region. is in Decr asing Regi	n 1. easing Region on 2.	1.

Addres	s A	Access Mode	Value At Reset	Nominal	Value		
0x0367	7	R/W	0x00				
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	AGC_ST	T_PWR_TC_H			AGC_ST	_PWR_TC_L	
AGC_01_r	PWR_TC	used in whether	nes the time c the AGC block the AGC shou ergy responds	. The short i ld be active.	term noise Larger tim	energy is use e constant ma	ed to det



#### 9.12.9 AGC_PK_TC

Address	S	Access Mode		Value At Reset	Nominal	Value		
0x0368			R/W	0x00				
Bit 7	Bit 6	6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	Reser	served Reserved		Reserved	Reserved	Reserved	AGC_F	PEAK_REL

AGC PEAK REL Determines the release time of peak detector. Peak detector is used to

detect the peak of AGC output signal and decide which region the AGC should operate in. The REL time is (2^AGC_PEAK_REL) * 4us.

#### 9.12.10AGC_PK

	Addre	ess	Access Mode	Value At Rese	t Nominal	Value						
	0x369-0	x36A	R	0x00				D.				
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
9	Reserved		AGC_PK[14:8]									
A	AGC_PK[7:0]											

AGC_PK

Read back for monitoring peak detector value. See 9.2.1Threshold and Power Calculation

#### 9.12.11AGC TARGETS

	Address Access Mode		Value At Reset							
0x0370-0x0	)377	R/W	0x00	_			-			
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
			AGC_TARG	_CLIP[15:8]						
			AGC_TARG	_CLIP [7:0]						
			AGC_TARC	G_HI[15:8]						
			AGC_TAR	G_HI [7:0]						
			AGC_TARC	G_LO[15:8]						
	AGC_TARG_LO [7:0]									
AGC_TARG_RB[15:8]										
AGC_TARG_RB [7:0]										

AGC_TARG_CLIP *

Sets the very high limit of target region. It is in 0.16 format representing decimal ratio of full scale.

AGC_TARG_HI *

Sets the high limit of target region. It is in 0.16 format representing decimal ratio of full scale.

## nuvoTon

AGC_TARG_LO * Sets the low limit of target region. It is in 0.16 format representing decimal ratio of full scale.

AGC_TARG_RB * Read only for monitoring current AGC output signal level.

* See 9.2.1Threshold and Power Calculation

#### 9.12.12AGC NOISE PARAMETERS

-	Address 0x0378-0x0	-	Access Mode Value At Re R/W 0x00		Value At Reset 0x00	Nominal	Value				
ſ	Bit 7	Bit	6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
8					AGC_NOISE	_BIAS[7:0]	-				
9					AGC_NOIS	E_HI[15:8]					
A	AGC_NOISE_HI[7:0]										
3					AGC_NOISI	E_LO[15:8]					
					AGC_NOIS	E_LO[7:0]					
D	AGC_NOISE_RB[23:16]										
E	AGC_NOISE_RB[15:8]										
F	AGC_NOISE_RB [7:0]										

AGC_NOISE_THD_BIAS	Sets the bias for AGC_NOISE_HI and AGC_NOISE_LO. See below.
AGC_NOISE_HI *	Sets the high limit of noise region, biased by AGC_NOISE_THD_BIAS. The
	actual noise high limit is AGC_NOISE_THD_BIAS[7:0] x 2 ⁻⁸ +
	AGC_NOISE_HI[15:0] x 2 ⁻²⁴ of the full scale signal.
AGC_NOISE_LO *	Sets the low limit of noise region, biased by AGC_NOISE_THD_BIAS The
	actual noise low limit is AGC_NOISE_THD_BIAS[7:0] x 2 ⁻⁸ +
	AGC_NOISE_LO[15:0] x $2^{-24}$ of the full scale signal.
AGC_NOISE_RB *	Read only for monitoring current noise power estimate. It is in 0.24 format
	representing decimal ratio of full scale.
* See 0.2 1Threshold and P	ower Calculation

* See 9.2.1Threshold and Power Calculation

#### **10. SPI COMMANDS**

The ISD61S00 provides SPI commands including: audio play and record commands, device status commands, digital commands, and device configuration commands.

The following section contains a list of all SPI commands and their function.

Instructions	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4 … Byte n	Description
PLAY_VP	0xA6	Index[15: 8]	Index[7:0]			Play Voice Prompt Index

- 166 -

#### Table 10-1 SPI Commands

## nuvoTon

Instructions	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4 … Byte n	Description
PLAY_VP@Rn	0xAE	N=07				Play Voice Prompt; Index @ Rn
PLAY_VP_LP	0xA4	Index[15: 8]	Index[7:0]	LoopCnt[1 5:8]	LoopCnt[7:0]	Loop Play Voice Prompt Index
PLAY_VP_LP@ Rn	0xB2	N=07	LoopCnt[1 5:8]	LoopCnt[7: 0]		Loop Play Voice Prompt; Index @ Rn
STOP_LP	0x2E					Stop the active PLAY_VP_LP or PLAY_VP_LP@Rn
EXE_VM	0xB0	Index[15: 8]	Index[7:0]			Execute voice macro Index
EXE_VM@Rn	0xBC	N=07				Execute voice macro Index @ Rr
REC_MSG	0x38					Record message
REC_MSG@	0x3A	A[23:16]	A[15:8]	A[7:0]		Record message starting at address A.
PLAY_MSG@	0x3C	A[23:16]	A[15:8]	A[7:0]	Off[15:8], Off[7:0]	Play message starting at address A offset by OFF sectors.
PLAY_SIL	0xA8	LEN[7:0]				Play silence for LEN*32ms
STOP	0x2A					STOP current playback or record operation.
ERASE_MSG@	0x3E	A[23:16]	A[15:8]	A[7:0]		Erase message starting at address A.
SPI_SND_AUD	0xAA	D0[7:0]	D0[15:8]	D1[7:0]	D1[15:8]Dn[7:0] Dn[15:8]	Send 16 bit PCM audio data [low- byte, high-byte] to ISD61S00 via SPI interface when doing REC_MGS
SPI_RCV_AUD	0xAC	D0[7:0]	D0[15:8]	D1[7:0]	D1[15:8]Dn[7:0] Dn[15:8]	Receive 16 bit PCM audio data [low-byte, high-byte] from ISD61S00 via SPI interface when doing PLAY_MSG
SPI_SND_CMP R	0xDC	D0[7:0]	D1[7:0]	D2[7:0]	D3[7:0]Dn[7:0]	Send compressed audio data to ISD61S00 via SPI interface to direct write to flash while doing REC_MSG/REC_MSG@
SPI_RCV_CMP R	0xBE	D0[7:0]	D0[15:8]	D1[7:0]	D3[7:0]Dn[7:0]	Direct read compressed audio data in ISD61S00 flash via SPI interface while doing PLAY_MSG@
SPI_SND_DEC	0xC0	D0[7:0]	D1[7:0]	D2[7:0]	D3[7:0]Dn[7:0]	Send compressed audio data to ISD61S00 via SPI interface for decoding.
SPI_RCV_ENC	0xC2	D0[7:0]	D1[7:0]	D2[7:0]	D3[7:0]Dn[7:0]	Receive compressed (encoded) audio data from ISD61S00 via SPI interface.

## ηυνοΤοη

Instructions	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4 … Byte n	Description
READ_STATUS	0x40	XX	XX	XX	XX	Query status of ISD61S00.
READ_INT	0x46	хх	ХХ	XX	XX	Query status and clear interrupt flags of ISD61S00.
RD_MSG_ADD	0x42	ХХ	ХХ	ХХ	XX, XX	Query message address details of audio record. Returns start address A and current sector length LEN.
RD_MSG_LEN	0x44	хх	хх			Query current sector length LEN of current playback or record operation.
READ_ID	0x48	XX	XX	XX	ХХ	Read device ID of ISD61S00.
DIG_READ	0xA2	A[23:16]	A[15:8]	A[7:0]	XX, XX	Read digital data from address A.
DIG_WRITE	0xA0	A[23:16]	A[15:8]	A[7:0],	D0[7:0], Dn[7:0]	Write digital data from address A.
ERASE_MEM	0x24	SA[23:16 ]	SA[15:8]	SA[7:0]	EA[23:16], EA[15:8], EA[7:0]	Erase sectors of memory from sector containing SA to sector containing EA.
CHIP_ERASE	0x26	0x01				Initiate a mass erase of memory
CHECKSUM	0xF2	EA[23:16 ]	EA[15:8]	EA[7:0]		Calculate checksum from very beginning to the specified end address.
PWR_UP	0x10					Power up ISD61S00
PWR_DN	0x12					Power down ISD61S00
WR_CFG_REG	0x80 + REG[9:8]	REG[7:0]	D0[7:0],Dn[7:0]			Write data D0Dn to configuration register(s) starting at configuration register REG.
RD_CFG_REG	0x90 + REG[9:8]	REG[7:0]		X	X,XX	Read configuration register(s) starting at configuration register REG.

Each command will be accepted if certain conditions are met as in the following table, or a CMD_ERR interrupt will be generated and the command ignored.

		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Instructions	Op Code	PD	DBUF_RDY	INT	RM_FUL	-	VM_BSY	CBUF_FUL	CMD_BSY
PLAY_VP	0xA6	0	1	х	x	-	0	0	X
PLAY_VP@Rn	0xAE	0	1	х	x	-	0	0	Х
PLAY_VP_LP	0xA4	0	1	х	x	-	0	0	X

#### Table 10-2 Commands vs. Status

- 168 -

Ser Contraction



PLAY_VP_LP@Rr	0xB2	0	1	X	x	-	0	0	X
STOP_LP	0x2E	0	1	X	x	-	х	х	X
EXE_VM	0xB0	0	1	x	x	-	0	0	0
EXE_VM@Rn	0xBC	0	1	x	x	-	0	0	0
REC_MSG	0x38	0	1	x	0	K	0	0	x
REC_MSG@	0x3A	0	1	x	0	×,	0	0	X
PLAY_MSG@	0x3C	0	1	x	x	2.0	0	0	X
PLAY_SIL	0xA8	0	1	x	x	2	0	0	X
STOP	0x2A	0	1	x	x		x	x	X
ERASE_MSG@	0x3E	0	1	x	x	2	0	0	0
SPI_SND_AUD	0xAA	0	1	x	x	-	x	x	х
SPI_RCV_AUD	0xAC	0	1	x	x	-	x	x	х
SPI_SND_CMPR	0xDC	0	1	x	x	-	x	x	x
SPI_RCV_CMPR	0xBE	0	1	x	x	-	x	x	X
SPI_SND_DEC	0xC0	0	1	x	x	-	0	0	0
SPI_RCV_ENC	0xC2	0	1	x	x	-	0	0	0
READ_STATUS	0x40	x	x	x	x	-	x	х	х
READ_INT	0x46	x	Х	X	x	-	х	X	X
RD_MSG_ADD	0x42	0	1	x	x	-	x	x	X
RD_MSG_LEN	0x44	0	1	x	x	-	x	x	X
READ_ID	0x48	0	1	x	x	-	x	x	X
DIG_READ	0xA2	0	1	x	х	-	х	х	x
DIG_WRITE	0xA0	0	1	X	х	-	х	X	x
CHECK_SUM	0xF2	0	1	X	х		0	0	0
ERASE_MEM	0x24	0	1	X	x	-	0	0	0
CHIP_ERASE	0x26	0	1	X	x	-	0	0	0
PWR_UP	0x10	1	0	x	x	-	х	х	x
PWR_DN	0x12	0	1	x	x	-	X	X	x
WR_CFG_REG	0x80	0	1	x	X	-	X	X	х
RD_CFG_REG	0x90	0	1	X	х	-	х	Х	x

## 10.1 Audio Play and Record Commands

This section describes the audio commands that can be sent to the device.

## ηυνοτοη

#### 10.1.1 Play Voice Prompt

PLAY_VP		25						
Byte Sequence:	Host controller	0xA6	Index[15:8]	Index[7:0]				
	ISD61S00	Status Byte	Status Byte	Status Byte				
Description:	Play Voice Promp	ot Index	the Co					
Interrupt Generation:	CMD_ERR if not accepted. CMD_FIN when playback is finished.							

This command initiates a play of a pre-recorded voice-prompt. Before execution of command a valid signal path must be set up and the device must have space in the audio command buffer. After completion of playback, the device will generate an interrupt. The command will be accepted if status bits PD=0, DBUF_RDY=1, VM_BSY=0 and CBUF_FUL=0. If any of these conditions are not met then a CMD_ERR interrupt will be generated and the command ignored. If command is terminated after the command byte is sent no interrupt will be generated. Once playback is finished a CMD_FIN interrupt will be generated.

#### 10.1.2 Play Voice Prompt @Rn, n = 0 ~ 7

PLAY_VP@Rn				2
Byte Sequence:	Host controller	0xAE	$n = 0 \sim 7$	
	ISD61S00	Status Byte	Status Byte	
Description:	Play Voice Prompt,	Index@Rn		
Interrupt Generation:	CMD_ERR if not ac	ccepted. CMD_FIN w	hen playback is finis	hed.

This command is same as PlayVP except that the 16bit index is stored in Rn,  $n = 0 \sim 7$ .

- R0[7:0] = CFG20, R0[15:8] = CFG21
- R1[7:0] = CFG22, R1[15:8] = CFG23
- R2[7:0] = CFG24, R2[15:8] = CFG25
- R3[7:0] = CFG26, R3[15:8] = CFG27
- R4[7:0] = CFG28, R4[15:8] = CFG29
- R5[7:0] = CFG2A, R5[15:8] = CFG2B
- R6[7:0] = CFG2C, R6[15:8] = CFG2D
- R7[7:0] = CFG2E, R7[15:8] = CFG2F

#### 10.1.3 Play Voice Prompt, Loop

Byte Sequence:	Host controller	0xA4	<i>Index</i> [15:8]	Index[7:0]	LoopCnt[15 :8]	LoopCnt[7: 0]

## ηυνοτοη

	ISD61S00	Status Byte	Status Byte	Status Byte	Status Byte	Status Byte		
Description:	Play Voice Pr	Play Voice Prompt Index, Loop						
Interrupt Generation:	CMD_ERR if	not accepted.	CMD_FIN whe	n playback is f	inished.			

This command initiates a loop-play of a pre-recorded voice-prompt. Number of play-loops is specified in LoopCnt[15:0]. Setting LoopCnt to 0 makes an endless play, which can only be ended by a STOP or STOP_LP command. Before execution of command a valid signal path must be set up, and the device must have space in the audio command buffer. After completion of playback, the device will generate an interrupt. The command will be accepted if status bits PD=0, DBUF_RDY=1, VM_BSY=0 and CBUF_FUL=0. If any of these conditions are not met then a CMD_ERR interrupt will be generated and the command ignored. If command is terminated after the command byte is sent no interrupt will be generated.





#### 10.1.4 Play Voice Prompt, Loop, @Rn, n = 0 ~ 7

PLAY_VP_LP@Rn			S.S.				
Byte Sequence:	Host controller	0xB2	<i>n</i> = 0 ~ 7	LoopCnt[15:8 ]	LoopCnt[7:0]		
	ISD61S00	Status Byte	Status Byte	Status Byte	Status Byte		
Description:	Play Voice Pro	mpt, Loop, <i>Ind</i> e	ex@Rn	Xa			
Interrupt Generation:	CMD_ERR if n	CMD_ERR if not accepted. CMD_FIN when playback is finished.					

This command is same as Play_VP_LP except that the 16bit index is stored in Rn,  $n = 0 \sim 7$ .

- R0[7:0] = CFG20, R0[15:8] = CFG21
- R1[7:0] = CFG22, R1[15:8] = CFG23
- R2[7:0] = CFG24, R2[15:8] = CFG25
- R3[7:0] = CFG26, R3[15:8] = CFG27
- R4[7:0] = CFG28, R4[15:8] = CFG29
- R5[7:0] = CFG2A, R5[15:8] = CFG2B
- R6[7:0] = CFG2C, R6[15:8] = CFG2D
- R7[7:0] = CFG2E, R7[15:8] = CFG2F

#### 10.1.5 Stop Loop-Play Command

STOP_LP							
Byte Sequence:	Host controller	0x2E					
	ISD61S00	Status Byte					
Description:	Stop current loop-pl	ay command					
Interrupt Generation:	Command itself do stopping.	Command itself does not generate interrupt, only those commands that it is					

This command stops any current PLAY_VP_LP or PLAY_VP_LP@Rn command active in the ISD61S00. The STOP_LP command does not flush the audio command buffer; that is, any command queued in the buffer when a STOP_LP is issued will be executed thereafter. When device has finished the active command a CMD_FIN interrupt will be generated. If there is no active PLAY_VP_LP or PLAY_VP_LP@Rn command then STOP_LP will have no effect.

#### 10.1.6 Execute Voice Macro

EXE_VM							
Byte Sequence:	Host controller	0xB0	Index[15:8]	Index[7:0]			
	ISD61S00	Status Byte	Status Byte	Status Byte			
Description:	Play voice macro Index						

## nuvoTon

Interrupt CMD_ERR if not accepted. CMD_FIN when playback is finished. Generation:	

This command initiates the execution of a pre-recorded voice group. After completion of the voice macro the device will generate a CMD_FIN interrupt. The command will be accepted if status bits PD=0, DBUF_RDY=1, VM_BSY=0, CBUF_FUL=0 and CMD_BSY=0. If any of these conditions are not met then a CMD_ERR interrupt will be generated and the command ignored. If command is terminated after the command byte is sent no interrupt will be generated. Once voice macro execution is finished a CMD_FIN interrupt will be generated.

#### 10.1.7 Execute Voice Macro @Rn, n = 0 ~ 7

EXE_VM@Rn			2	2 Sh
Byte Sequence:	Host controller	0xBC	<i>n</i> = 0 ~ 7	Non the
	ISD61S00	Status Byte	Status Byte	26 92
Description:	Play voice macro	Index@Rn		Ya Co
Interrupt Generation:	CMD_ERR if not a	ccepted. CMD_FI	N when playback is t	finished.

This command is same as EXE_VM except that the 16bit index is stored in Rn,  $n = 0 \sim 7$ .

- R0[7:0] = CFG20, R0[15:8] = CFG21
- R1[7:0] = CFG22, R1[15:8] = CFG23
- R2[7:0] = CFG24, R2[15:8] = CFG25
- R3[7:0] = CFG26, R3[15:8] = CFG27
- R4[7:0] = CFG28, R4[15:8] = CFG29
- R5[7:0] = CFG2A, R5[15:8] = CFG2B
- R6[7:0] = CFG2C, R6[15:8] = CFG2D
- R7[7:0] = CFG2E, R7[15:8] = CFG2F

#### 10.1.8 Record Message

REC_MSG								
Byte Sequence:	Host controller	0x38						
A. C.	ISD61S00	Status Byte						
Description:	Initiates a manageo	Initiates a managed record at first available location in memory.						
Interrupt Generation:	CMD_ERR if not when device fills av	accepted. CMD_FIN vailable memory.	when recording co	mplete. FULL_ERR				

This command initiates a record operation. Before execution of command a valid signal path must be set up and the device must have space in the audio command buffer. If device is or becomes full, an interrupt is generated and the FULL_ERR bit of the interrupt status register is set. Recording is terminated by

## nuvoton

issuing a STOP command. After the operation is complete the begin address of the message can be read, along with the number of sectors recorded, with the READ MSG ADDR command.

The command will be accepted if status bits PD=0, DBUF RDY=1, VM BSY=0 and CBUF FUL=0. If any of these conditions are not met then a CMD_ERR interrupt will be generated and the command ignored. If memory becomes full while recording a FULL_ERR interrupt will be generated. If device was full before the record was sent then a FULL ERR interrupt will be generated and READ MSG ADDR will return a length of zero. When a record is terminated by a stop command a CMD_FIN interrupt will be generated once the recording process is complete.

Note, if REC MSG SEC LENGTH[15:0] is 0 (CFG REG5E= REC MSG SEC LENGTH[15:8]; CFG_REG5D= REC_MSG_SEC_LENGTH[7:0]), the REC_MSG will need CMD STOP to end. If REC MSG SEC LENGTH[15:0] is NOT 0, the REC MSG command will automatically end after the number of sectors which set by REC MSG SEC LENGTH[15:0] have been programmed

#### 10.1.9 Record Message at Address

REC_MSG@				32	05			
Byte Sequence:	Host controller	0x3A	A[23:16]	A[15:8]	A[7:0]			
	ISD61S00	Status Byte	Status Byte	Status Byte	Status Byte			
Description:	Initiate a managed r	ecord starting at	sector addres	s A/4096	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
Interrupt Generation:		CMD_ERR if not accepted. CMD_FIN when recording complete. ADDR_ERR if invalid address sent.						

This command initiates a record operation starting at a specified address. Before execution of command a valid signal path must be set up and the device must have space in the audio command buffer. If device is or becomes full, the RM FULL bit of the status register is set. Recording is terminated by issuing a STOP command. After the operation is complete the begin address of the message can be read, along with the number of sectors recorded out with the READ MSG ADDR command.

The command will be accepted if status bits PD=0, DBUF RDY=1, VM BSY=0 and CBUF FUL=0. If any of these conditions are not met then a CMD ERR interrupt will be generated and the command ignored. If command is terminated after the command byte is sent no interrupt will be generated. If memory becomes full while recording a FULL ERR interrupt will be generated. If device was full before the record was sent then a FULL ERR interrupt will be generated and READ MSG ADDR will return a length of zero. If the address sent is not a blank sector then an ADDR_ERR interrupt is generated. When a record is terminated by a stop command a CMD FIN interrupt will be generated once the recording process is complete.

Note, if REC MSG SEC LENGTH[15:0] is 0 (CFG REG5E= REC MSG SEC LENGTH[15:8]; CFG REG5D= REC MSG SEC LENGTH[7:0]), the REC MSG will need CMD STOP to end. If REC MSG SEC LENGTH[15:0] is NOT 0, the REC MSG command will automatically end after the number of sectors which set by REC MSG SEC LENGTH[15:0] have been programmed.

#### 10.1.10Play Message at Address

PLAY_MSG@	A 6						
Byte	Host controller	0x3C	A[23:16]	A[15:8]	A[7:0]	OFF[15:8]	OFF[7:0]
	"On ~	>					
			6		lication Rel	ease Date: Mai	
			- 174	-			Revision 2.7

## nuvoTon

Sequence:	ISD61S00	Status Byte	Status Byte	Status Byte	Status Byte	Status Byte	Status Byte		
Description:	Initiate a manage	Initiate a managed record starting at sector address A/4096 + OFF							
Interrupt Generation:	CMD_ERR if not accepted. CMD_FIN when playback complete. ADDR_ERR if invalid address sent.								

This command initiates a play of a recorded message starting at a specified address, with a specified sector offset. Before execution of command a valid signal path must be set up and the device must have space in the audio command buffer. If an address is sent that is not a valid message an error interrupt is generated with the ADDR_ERR bit set. Playback can be terminated by issuing a STOP command. After completion of playback, the device will generate an interrupt. This command can be used to randomly access a message at any 4K sector boundary by sending the appropriate offset. The bottom 12 bits of the start address are ignored as messages must begin at a 4Kbyte sector boundary. If command is sent with less than five bytes of data the command is ignored.

The command will be accepted if status bits PD=0, DBUF_RDY=1, VM_BSY=0 and CBUF_FUL=0. If any of these conditions are not met then a CMD_ERR interrupt will be generated and the command ignored. If command is terminated after the command byte is sent no interrupt will be generated. Once playback is finished a CMD_FIN interrupt will be generated. If the address sent is not a beginning of message sector then an ADDR_ERR interrupt will be generated. If the offset is greater than the message length then an ADDR_ERR interrupt will be generated.

PLAY_SIL									
Byte Sequence:	Host controller	0xA8	<i>LEN</i> [7:0]						
	ISD61S00	Status Byte 0	Status Byte 0						
Description:	Play silence for LEN	Play silence for LEN*32ms							
Interrupt Generation:	CMD_ERR if not ac	ccepted. CMD_FIN w	hen silence playback	c complete.					

#### 10.1.11Play Silence

This command plays a period of silence to the signal path. Before execution of command a valid signal path must be set up and the device must have space in the audio command buffer. After completion, the device will generate an interrupt. The length of silence played is determined by the data byte, LEN, sent. Silence is played in 32ms increments (at signal path sampling frequency of 32 kHz), total silence played is LEN*32ms.

The command will be accepted if status bits PD=0, DBUF_RDY=1, VM_BSY=0 and CBUF_FUL=0. If any of these conditions are not met then a CMD_ERR interrupt will be generated and the command ignored. If command is terminated after the command byte is sent no interrupt will be generated. Once silence play is finished a CMD_FIN interrupt will be generated.

#### 10.1.12Stop Command

STOP	Sh		
Byte Sequence:	Host controller	0x2A	
	ISD61S00	Status Byte	

- 175 -

## nuvoTon

Description:	Stop current audio command and flush command buffer.
Interrupt Generation:	Command itself does not generate interrupt, only those commands that it is stopping.

This command stops any current audio command active in the ISD61S00. If a PLAY_MSG@, PLAY_VP, EXE_VM or PLAY_SIL command is active playback is stopped immediately. If a REC_MSG command is active recording is stopped at the next available byte boundary. The STOP command flushes the audio command buffer, that is any command queued in the buffer when a STOP is issued will not be executed. When device has finished the active command a CMD_FIN interrupt will be generated. STOP will not stop an ERASE_MSG or ERASE_MEM operation. If there is no active command then STOP will have no effect.

#### 10.1.13Erase Message at Address

ERASE_MSG@				~ ~ ~ ~	- Sal					
Byte Sequence:	Host controller	0x3E	A[23:16]	A[15:8]	A[7:0]					
	ISD61S00	Status Byte	Status Byte	Status Byte	Status Byte					
Description:	Erase message st	Erase message starting at sector address A/4096								
Interrupt Generation:	CMD_ERR if not a address sent.	accepted. CMD_FI	N when erase c	complete. ADDR	_ERR if invalid					

This command erases the message starting at the specified address. The command will be accepted if status bits PD=0, DBUF_RDY=1, VM_BSY=0, CBUF_FUL=0 and CMD_BSY=0. If any of these conditions are not met then a CMD_ERR interrupt will be generated and the command ignored. If address sent is not a beginning of message sector an ADDR_ERR interrupt is generated. Upon completion of command CMD_FIN interrupt is generated. While the device is erasing no other commands will execute. If a PLAY or REC is sent it is queued in the command buffer and will not execute until the erase is finished. If a DIG_RD or DIG_WR command is sent to the device, RDY/BSYB will hold off any data transfer until the ERASE_MSG@ has completed.

#### 10.1.14SPI Send Audio Data

1	SPI_SND_AUD									
Byte	Host controller	0Xaa	D0[7:0]	D0[15:8]		Dn[7:0]	Dn[15:8]			
5	Sequence:	ISD61S00	Status Byte							
2	Description:	Write audio data	Write audio data via SPI interface.							
~	Interrupt Generation:	OVF_ERR if RD	//BSY violated.							

This command allows the user to send audio data, in 16bit PCM format, down the SPI interface for feedthrough or recording. Before execution of command a valid signal path must be set up.

If recording data (SPI record), then: a signal path must be set up for SPI input to the compressor. A valid record command is then sent followed by the SPI_SND_AUD command. Multiple SPI_SND_AUD commands can be issued to write data to the ISD61S00. To finish recording a STOP command is sent and device will respond with a CMD_FIN interrupt. If a memory overflow occurs during the operation a



FULL_ERR interrupt will be generated and no more data will be accepted. RDY/BSYB will handshake dataflow if device cannot compress and write data at the rate sent down the SPI interface.

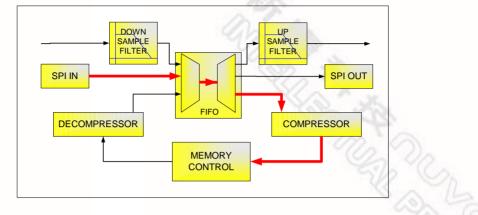



Figure 10-1 SPI Record

If sending audio data to the analog outputs (SPI feed-through), then: (1) the path must be set up for SPI input to the signal path. (2) A SPI_SND_AUD command is then sent. Multiple SPI_SND_AUD commands can be issued to write data to the ISD61S00. (3) To finish sending audio data a STOP command is sent and device will respond with a CMD_FIN interrupt. RDY/BSYB will handshake dataflow to the sample rate set by the audio configuration register. If host cannot keep up with data rate audio will be corrupt. Once audio data is sent, raise SSB high and device will continue to play zero samples out the signal path until reconfigured or more data is sent.

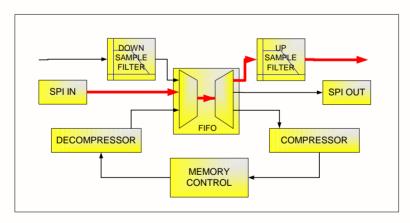



Figure 10-2 SPI Feed-through

The RDY/BSYB signal will go low whenever the internal FIFO is full. If no path or record operation is set up then RDY/BSYB will not return high until command is terminated. If RDY/BSYB is ignored then an OVF_ERR interrupt is generated.

#### 10.1.15 SPI Receive Audio Data



## nuvoTon

Byte Sequence:	Host controller	0xAC	- 254						
	ISD61S00	Status Byte	D0[7:0]	D0[15:8]		Dn[7:0]	Dn[15:8]		
Description:	Read audio data	Read audio data via SPI interface.							
Interrupt Generation:	OVF_ERR if RD	Y/BSY violated	N/	S.					

This command allows the user to receive audio data, in 16bit PCM format, from the SPI interface for feedthrough or playback. Before execution of command a valid signal path must be set up.

If receiving recorded audio data (SPI playback), then: a signal path must be set up for SPI output from the compressor. A valid play command is then sent followed by the SPI_RCV_AUD command. Multiple SPI_RCV_AUD commands can be sent. To finish receiving data a STOP command is sent and device will generate a CMD_FIN interrupt. When the end of message is reached a CMD_FIN interrupt will be generated and zero will be sent as data.

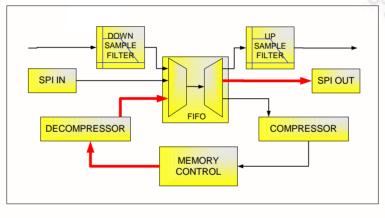



Figure 10-3 SPI Playback

If reading audio data from the analog inputs (feed-through SPI) then: (1) the path must be set up for SPI output from the signal path. (2) A SPI_RCV_AUD command is then sent. Multiple SPI_RCV_AUD commands can be sent. (3) To finish receiving data a STOP command is sent and device will generate a CMD_FIN interrupt. RDY/BSYB will handshake dataflow to the sample rate set by the audio configuration register. If host cannot keep up with data rate, audio will be corrupt.

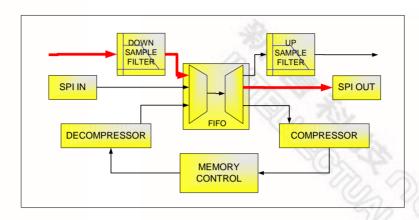



Figure 10-4 Feed-through SPI

The RDY/BSYB signal will go low whenever the internal FIFO is empty. If no path or playback operation is set up then RDY/BSYB will be low until command is terminated. If RDY/BSYB is ignored then an OVF_ERR interrupt is generated.

SPI_SND_CM PR									
Byte	Host controller	0XDC	D0[7:0]	D0[15:8]		Dn[7:0]	Dn[15:8]		
Sequence:	ISD61S00	Status Byte							
Description:		During REC_MSG or REC_MSG@, Write compressed data via SPI interface to direct program the compressed data to flash memory							
Interrupt Generation:	OVF_ERR if RD	Y/BSY violated.							

#### 10.1.16SPI Send Compressed Audio Data for direct programming to flash

nuvoTon

This command allows the user to send compressed audio data, down the SPI interface for recording. Before execution of command make sure CFG_REG2=0x00 (ENC, DEC, SPI_IN, SPI_OUT should be all 0)

A valid REC_MSG or REC_MSG@ command is then sent followed by the SPI_SND_CMPR command. Multiple SPI_SND_CMPR commands can be issued to write data to the ISD61S00. To finish recording a STOP command is sent and device will respond with a CMD_FIN interrupt. If a memory overflow occurs during the operation a FULL_ERR interrupt will be generated and no more data will be accepted. RDY/BSYB will handshake dataflow.

Sample Sequence:

- 1. Make sure CFG_REG2=0x00
- 2. Issue REC_MSG or REC_MSG@ command

## nuvoTon

- 3. Issue SPI_SND_CMPR with compressed data
- 4. STOP

#### 10.1.17SPI Receive previous REC_MSG or REC_MSG@ compressed Audio Data stored in flash

SPI_RCV_CMP R			X		E.				
Byte Sequence:	Host controller	0xBE		SIN	1	3			
	ISD61S00	Status Byte	D0[7:0]	D0[15:8]	t.	Dn[7:0]	Dn[15:8]		
Description:		During PLAY_MSG or PLAY_MSG@, read previous REC_MSG or REC_MSG@ compressed Audio data stored in flash via SPI							
Interrupt Generation:	OVF_ERR if RD	Y/BSY violated.				No.	en al		

This command allows the user receiving previous REC_MSG or REC_MSG@ compressed Audio Data stored in flash through SPI interface. Before execution of command make sure CFG_REG2=0x00 (ENC, DEC, SPI_IN, SPI_OUT should be all 0)

A valid PLAY_MSG@ command is then sent followed by the SPI_RCV_CMPR command. Multiple SPI_RCV_CMPR commands can be sent. To finish receiving data a STOP command is sent and device will generate a CMD_FIN interrupt. When the end of message is reached a CMD_FIN interrupt will be generated.

Sample Sequence:

- 1. Make sure CFG_REG2=0x00
- 2. Issue PLAY_MSG@ command with correct start address
- 3. Issue SPI_RCV_CMPR and read compressed data from MISO
- 4. STOP or wait CMD_FIN interrupt

Publication Release Date: March 10, 2011 Revision 2.7



#### 10.1.18 SPI Send Compressed Data to Decode

SPI_SND_DEC			an a			
	Host controller	0xC0	D0[7:0]	D1[7:0]		Dn[7:0]
Byte Sequence:	ISD61S00	Status Byte	R.	NY.		
Description:	Write compressed a	2				
Interrupt Generation:	OVF_ERR if RDY/BSYB violated.					

This command allows the user to send compressed audio data, in a byte formatted bit stream, down the SPI interface to the de-compressor and signal path. Before execution of command a valid signal path must be set up. Valid paths are similar to a standard playback. Multiple SPI_SND_DEC commands can be issued to send data to the ISD61S00. To finish decoding a STOP command is sent and device will respond with a CMD_FIN interrupt. RDY/BSYB will handshake dataflow if device cannot accept any further data for decompression. If host cannot keep up with data rate audio output will be corrupted.

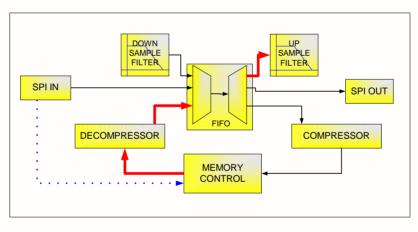



Figure 10-5 SPI Send Compressed Data to Decode

The RDY/BSYB signal will go low whenever the internal FIFO is full. If no path set up to accept audio data then RDY/BSYB will not return high until command is terminated. If RDY/BSYB is ignored then an OVF_ERR interrupt is generated. The SPI_SND_DEC command is accepted if no current play or record operation is active. If command is not accepted a CMD_ERR interrupt will be generated. It is possible to perform digital memory operations between SPI_SND_DEC operations; however care must be taken to maintain the required data rate to avoid audio corruption.



#### 10.1.19 SPI Receive Encoded Data

SPI_RCV_ENC		- G	h	S				
Byte Sequence:	Host controller	0xC2		100				
Byte Sequence.	ISD61S00	Status Byte	D0[7:0]	D1[7:0]		Dn[7:0]		
Description:	Read compressed	l audio data via	SPI interfac	ce.				
Interrupt Generation:	OVF_ERR if RDY	OVF_ERR if RDY/BSYB violated.						

This command allows the user to receive compressed audio data, in a byte formatted bit stream, from the SPI interface for use or storage outside the ISD61S00. Before execution of command a valid recording signal path must be set up such that compressor is active. Multiple SPI_RCV_ENC commands can be sent to receive compressed data from the ISD61S00. To finish receiving data a STOP command is sent and device will generate a CMD_FIN interrupt.

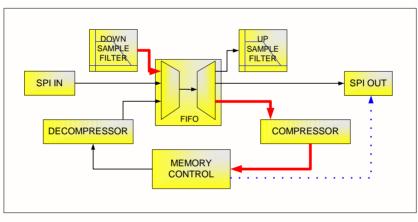



Figure 10-6 SPI Received Encoded Data

RDY/BSYB will handshake dataflow to the sample rate and compression bit rate set by the audio configuration register. If host cannot keep up with data rate compressed audio will be corrupt.

The RDY/BSYB signal will go low whenever the internal FIFO is empty. If no path is set up then RDY/BSYB will be low until command is terminated. If RDY/BSYB is ignored then an OVF_ERR interrupt is generated. The SPI_RCV_ENC command is accepted if no current play or record operation is active. If command is not accepted a CMD_ERR interrupt will be generated. It is possible to perform digital memory operations between SPI_RCV_ENC operations; however care must be taken to maintain the required data rate to avoid audio corruption.



#### 10.2 Device Status Commands.

#### 10.2.1 Read Status

#### Powered up:

READ_STATUS			6	Con the second	
	Host	0x40	0xXX	0xXX	0xXX
Byte Sequence:	ISD61S00	Status Byte	Interrupt Status Byte 1	Interrupt Status Byte 2	Interrupt Status Byte 3
Description:	Query device	ce status.		50	(Con

#### Powered down:

READ_STATUS			
Puto Seguenco:	Host controller	0x40	0xXX
Byte Sequence:	ISD61S00	Status Byte 80h	00h
Description:	Query device status.	•	

This command queries the ISD61S00 device status. For details of device status see Section 7.1. If device is powered up, the four status bytes will be repeated for each four dummy bytes sent to the SPI interface. If device is powered down, only one status byte 80h shows up to the SPI interface at the same time the command is sent. This command is always accepted.

#### 10.2.2 Read Interrupt

	READ_INT									
		Host	0x46	0xXX	0xXX	0xXX				
è	Byte Sequence:	ISD61S00	Status Byte	Interrupt Status Byte 1	Interrupt Status Byte 2	Interrupt Status Byte 3				
	Description:	Query devic	Query device status and clear interrupt flags.							

This command queries the ISD61S00 device status and clears any pending interrupts. After this command the hardware interrupt line will return inactive. The INT bit of the status register along with any status error bits will return inactive. This command is accepted whenever device is powered up.

#### 10.2.3 Read Recorded Message Address Details

RD_MSG_ADD	Dr.										
Byte	Host	0x42	Х	Х	Х	Х	Х				
Sequence:	ISD61S00	STATUS0	A[23:16]	A[15:8]	A[7:0]	LEN[15:8]	3] LEN[7:0]				
Description:	Reports the start sector address A/4096 of current message and length, LEN, i 4kByte sectors										



This interrogates the status of the last or current audio record command. It returns the start address so that the user can address a message for playback and also returns the number of sectors that the message has used. It should be issued immediately after a record is initiated to correctly get retrieve the message start address and current length of message. After a STOP command or overflow condition, data is valid for final message length after CMD BSY has returned low and before a subsequent audio command is issued.

#### 10.2.4 Read Message Length

RD_MSG_LEN			9	93 Yr				
Byte Sequence:	Host controller	0x44	0xXX	0xXX				
	ISD61S00	ISD61S00 Status Byte LEN[15:8]						
Description:	Read number of	Read number of sectors played by current PLAY command.						

This command returns the number of sectors played by the current PLAY MSG@ command, or recorded by the current REC MSG command. This command is used to determine the offset position of the currently playing/recording message. It can be used to resume the playback of a message at a particular sector. For instance, if a PLAY MSG(SA, 0) command was sent to start playback of a message from SA then a STOP was sent during playback of the third sector of the message, then RD MSG LEN would return LEN=3. A subsequent PLAY MSG(SA,2) command would restart the playback from the beginning of the sector where playback was stopped; that is send PLAY MSG(SA, LEN-1). Now, if a STOP was issued after an additional three sectors of playback (message is now playing the sixth sector), RD MSG LEN would return LEN=6.

#### 10.2.5 Read ISD61S00 ID

READ_ID									
Byte	Host controller	0x48	0xXX	0xXX	0xXX	0xXX			
Sequence:	ISD61S00 Status Byte PART_ID MAN_ID MEM_TYPE DEV_ID								
Description:	Return memory I	Return memory ID of internal memory							

This command gueries the ISD61S00 to returns four bytes to indicate the ISD61S00 family member and the manufacturer, size and type of internal memory of the device. The four bytes returned are:

PART ID - Identifies which ISD61S00 family member.

MAN ID - Manufacturer ID, which is 0xEF for Winbond.

MEM TYPE - Memory type, which is 0x30.

DEV_ID – Device ID indicates the memory size as the table below.

Capacity	Value
4Mb	13
8Mb	14
16Mb	15

32Mb	16
64Mb	17

#### **10.3 Digital Memory Commands.**

nuvoton

This section describes the 4 digital data commands that can be sent to the device. Digital commands are ones that read, write or erase data directly in the flash memory through a separate interface than the audio data command interface. Digital memory commands other than erase, can occur simultaneously with audio memory commands.

#### 10.3.1 Digital Read

DIG_READ						82	4	2
Byte Sequence:	Host controller	0xA2	A[23:16]	A[15:8]	A[7:0]	0xXX	2	0xXX
	ISD61S00	Status	Status	Status	Status	D0	10	Dn
Description:	Initiates a digital	read of me	emory from a	ddress A[	23:0].		Y	N.S.
Interrupt Generation:	ADDR_ERR if m end of array.	DDR_ERR if memory protected or RDY/BSYB violated. OVF_ERR if read past nd of array.						

This command initiates a read of flash memory from address A[23:0]. Following the three address bytes, data can be read out of memory in a sequential manner. The RDY/BSYB signal is used to control flow of data. If RDY/BSYB goes low, transfer must be paused until RDY/BSYB returns high. The user should check RDY/BSYB before every byte is sent/read including the command and address bytes. As many bytes of data as required can be read, command is terminated by raising SSB high, finishing the SPI transaction. If an attempt is made to read past the end of memory, status byte will be read back.

The command will always be accepted and RDY/BSYB will go low until any active digital memory command is complete. If a digital read is attempted in read protected memory, status byte will be read back and an ADDR_ERR interrupt will be generated. If a read past the end of memory is attempted an OVF_ERR interrupt will be generated. If RDY/BSYB is violated then zero data will be read back and an ADDR_ERR interrupt will be generated.

#### 10.3.2 Digital Write

DIG_WRITE	20								
Byte	Host controller	0xA0	A[23:16]	A[15:8]	A[7:0]	D0		Dn	
Sequence:	ISD61S00	Status	Status	Status	Status	Status		Status	
Description:	Initiates a digital	Initiates a digital write to memory from address A[23:0].							
Interrupt Generation:	ADDR_ERR if memory protected or RDY/BSYB violated. OVF_ERR if write past end of array.								

- 185 -



This command initiates a write to flash memory from address A[23:0]. Following the three address bytes, data can be written to memory in a sequential manner. The RDY/BSYB signal is used to control flow of data. If RDY/BSYB goes low, transfer must be paused until RDY/BSYB returns high. The user should check RDY/BSYB before every byte is sent including the command and address bytes. As many bytes of data as required can be written, command is terminated by raising SSB high, finishing the SPI transaction.

The command will always be accepted and RDY/BSYB will go low until any active digital memory command is complete. If a digital write is attempted in write protected memory, data will be ignored and an ADDR_ERR interrupt will be generated. If a write is attempted past the end of memory an OVF_ERR interrupt will be generated. If RDY/BSYB is violated then data will ignored and an ADDR_ERR interrupt will be generated. If RDY/BSYB is violated then data will ignored and an ADDR_ERR interrupt will be generated. Once the SPI transaction has ended the ISD61S00 will finish the flash write operation. When this operation is complete the ISD61S00 will generate a WR_FIN interrupt. While device is actively writing to flash memory the CMD_BSY bit will be active.

ERASE_MEM								1 22
Byte Sequence:	Host controller	0x24	SA[23:16]	SA[15:8]	SA[7:0]	EA[23:16]	EA[15:8]	EA[7:0]
	ISD61S00	Status	Status	Status	Status	Status	Status	Status
Description:	Erases men	nory from	sector contai	ining SA to	sector con	taining EA.		
Interrupt Generation:	ADDR_ERR operation co		ory protected	I. CMD_ER	R if devic	ce is busy. (	CMD_FIN w	hen erase

#### 10.3.3 Erase Memory

This erases memory from the sector containing start address SA to the sector containing end address EA. The minimum erase block of internal memory is a 4kByte sector.

The command will be accepted if status bits PD=0, DBUF_RDY=1, VM_BSY=0, CBUF_FUL=0 and CMD_BSY=0. If any of these conditions are not met then a CMD_ERR interrupt will be generated and the command ignored. If memory is write protected an ADDR_ERR interrupt is generated. Upon completion of erase a CMD_FIN interrupt is generated.

While the device is erasing no other commands will execute. If a PLAY or REC is sent it is queued in the command buffer and will not execute until the erase is finished. If a DIG_RD or DIG_WR command is sent to the device, RDY/BSYB will hold off any data transfer until the ERASE_MEM has completed.

When ERASE_MEM is in progress, the Status bit 0 CMD_BSY goes high. Users could poll the status to see if the erasing is done.

CHIP_ERASE	Do			
Byte Sequence:	Host controller	0x26	0x01	
12	ISD61S00	Status Byte	Status Byte	
Description:	Initiate a mass era	ase of memory.		

#### 10.3.4 Chip Erase



Interrupt	CMD_ERR if device is busy and cannot accept command. CMD_FIN when
Generation:	erase operation complete.

This erases the entire contents of the internal memory.

The command will be accepted if status bits PD=0, DBUF_RDY=1, VM_BSY=0, CBUF_FUL=0 and CMD_BSY=0. If any of these conditions are not met then a CMD_ERR interrupt will be generated and the command ignored. If memory is mass erase protected an ADDR_ERR interrupt is generated. Upon completion of erase a CMD_FIN interrupt is generated.

While the device is erasing no other commands will execute. If a PLAY or REC is sent it is queued in the command buffer and will not execute until the erase is finished. If a DIG_RD or DIG_WR command is sent to the device, RDY/BSYB will hold off any data transfer until the CHIP_ERASE has completed.

When CHIP_ERASE is in progress, the Status bit 0 CMD_BSY goes high. Users could poll the status to see if the erasing is done.

CHECKSUM					292 6			
Byte Sequence:	Host controller	0xF2	EA[23:16]	EA[15:8]	EA[7:0]			
	ISD61S00	Status Byte	Status	Status	Status			
Description:	Initiate a check	sum of memory.						
Interrupt Generation:		MD_ERR if device is busy and cannot accept command. CMD_FIN when ase operation complete.						

#### 10.3.5 CHECKSUM

This initiates a 4-byte checksum calculation from the very beginning to the specified end address. The calculated checksum is stored in register 0x59[7:0] 0x5A[15:8] 0x5B[23:16] 0x5C[31:24]. To re-calculate the checksum with a different end address, users have to set register 0x18 bit-0 to clear the registers  $0x59 \sim 0x5C$ .

The command will be accepted if status bits PD=0, DBUF_RDY=1, VM_BSY=0, CBUF_FUL=0 and CMD_BSY=0

When CHECKSUM is in progress, the Status bit 0 CMD_BSY goes high. Users could poll the status to see if the CHECK SUM is done.

#### **10.4 Device Configuration Commands.**

This section describes commands used to configure the ISD61S00. These commands are used to:

- Set up the clocking regime of the device including clock source and setting the master sample rate.
- Configure the audio signal path.
- Control other processing blocks within the device.
- Configure the compression and sample rate for message recording.

### nuvoTon

#### 10.4.1 PWR_UP – Power up

PWR_UP			150	
Byte Sequence:	Host controller	0x10	D. A.	
	ISD61S00	Status	N/A CON	
Description:	Powers up device	and initiate	es the power up seq	luence.

This command powers up the device. If device already powered up this command has no effect. If powered down, then the internal power up sequence is initiated. If the PU voice macro is present this is executed, otherwise the device defaults to previous clock configuration values or the default values following a reset condition. When power up is complete the PD bit of the status register will go low and the RDY bit high. Until this event no other commands will be accepted by the ISD61S00.

A formal power-up procedure is as follows:

- Send PWR_UP command.
- Poll Status until bit-6 DBUF_RDY goes high, indicates device is ready to accept commands.
- Poll Status until bit-2 VM_BSY goes low, indicates voice macro 1 is finished.

#### 10.4.2 PWR_DN - Power Down

PWR_DN				
Byte Sequence:	Host controller	0x12		
	ISD61S00	Status		
Description:	Powers down the	device after a	any active commar	nds finish

This command powers down the device. If the device is currently executing a command the device will powers down when the command finishes. If sent while recording, without a STOP command sent first, then device will record until full then power down. If playing or executing a voice macro, device will power down after playback is finished. The PWR_DN command will not generate an interrupt. PWR_DN has executed when PD bit of status goes high.

#### 10.4.3 WR_CFG_REG – Write Configuration Register

WR_CFG_REG									
Byte Sequence:	Host controller	0x80   REG[9:8]	REG[7:0]	D0		Dn			
2.4	ISD61S00	STATUS0							
Description:		Loads configuration register CFG[REG] with D0. Data bytes 1n can be sent to load CFG[REG+1] with D1 to CFG[REG+n] with Dn.							

This command loads configuration registers starting at the address specified. If multiple data bytes are sent, additional configuration registers are loaded. See Section 8 for details on configuration registers.

#### 10.4.4 RD_CFG_REG – Read Configuration Register

RD_CFG_REG



Byte Sequence:	Host controller	0x90   REG[9:8]	REG[7:0]	Х		Х			
	ISD61S00	STATUS0	2	D0		Dn			
Description:		Reads configuration register CFG[REG] and outputs to SPI as D0. Data bytes 1n can be read sequentially from CFG[REG+1] to CFG[REG+n].							

This command reads the configuration register starting at the address specified. If multiple data bytes are sent, additional configuration registers are read. See Section 8 for details on configuration registers.

#### **10.5 Device Power Up Sequence**

It is important to sequence the power up configuration of the device to prevent unwanted transients from occurring on audio outputs of the device. A general guideline to achieve this is:

- 4. Send PWR_UP command and wait until device ready.
- 5. Send correct clock configuration if not using default values or if not set in PU voice macro.
- 6. Power up CODEC.
- 7. Set mixer path with DAC/ADC muted.
- 8. Power up analog path: power up drivers and DAC with outputs muted, then unmute outputs.
- 9. Unmute DAC/ADC.

A general power down sequence is the reverse of above.

ALCON CONTRACTOR

#### 11. ISD61S00 MEMORY MANAGEMENT

The ISD61S00 employs several memory management techniques to make audio recording and playback transparent to the host controller. The address space of the ISD61S00 starts at address zero of the internal memory. This internal memory size can range from 2M to 64M with an erasable sector size of 4kBytes. The following sections will describe the ISD61S00 memory management architecture and the message management functions.

#### 11.1 ISD61S00 Memory Format

The Recording Memory Pointer (RMP) divides the ISD61S00 memory address space into two blocks, Reserved Memory and Recording Memory. The RMP is a two-byte address pointer pointing to a 4kByte memory sector which is the first sector available to users for recording messages. Memory between address zero and the RMP pointer is considered the Reserved Memory for pre-recorded audio (Voice Prompts), pre-programmed macro scripts (Voice Macros), digital read/write access for other applications (User Data) and memory sectors reserved for the first sector of the message recordings and rerecordable pre-recorded messages (Reserved Sectors). The memory between the RMP and the end of memory is considered the Recording Memory allocated for recording messages (Message Recordings). Figure 11-1 illustrates the memory format with the RMP set at address 4000h or sector 4. Section 11.3 will provide more detail regarding the setting of the RMP.

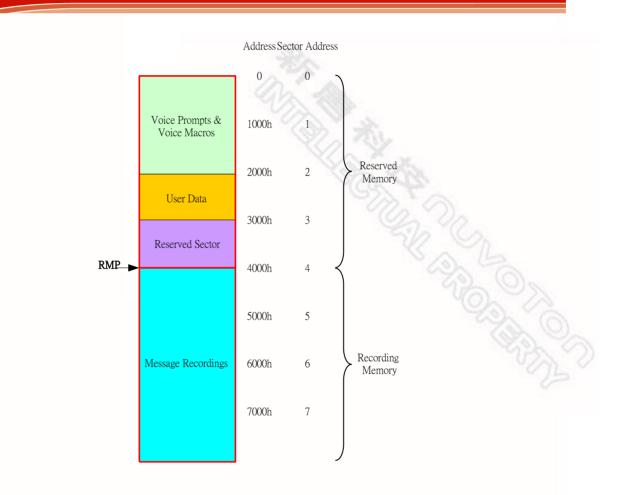



Figure 11-1 ISD61S00 Memory Format

#### 11.2 Message Management

nuvoton

The message management schemes implemented on the ISD61S00 are:

- 1. Voice Prompts: A collection of pre-recorded audio that can be played back using the PLAY_VP SPI command or Voice Macros.
- 2. Voice Macros: A powerful voice script allowing users to create custom macros to play Voice Prompts, play message recordings, insert silence and configure the device. Voice Macros are executed with a single SPI command.
- 3. User Data: Memory sectors defined and allocated by the users for use in other applications
- 4. Reserved Sectors: Memory sectors reserved for the first sector of the message recordings (Empty Message) and re-recordable pre-recorded messages (Re-recordable Message).
- 5. Message Recordings: Messages recorded, played and erased "on the fly" by the users.



#### 11.2.1 Voice Prompts

Voice prompts are pre-recorded audio of any length, from short words, phrases or sound effects to long passages of music. These Voice Prompts can be played back in any order as determined by the users and applications. A Voice Prompt consists of two components:

- 1. An index pointing to the pre-recorded audio
- 2. Pre-recorded audio

To play a Voice Prompt, the ISD61S00 use the index of the Voice Prompt to locate and play the prerecorded audio. This approach allows users to easily manage the pre-recorded audio without the need to update the code on the host controller. In addition, the users can store a multitude of pre-recorded audio without the overhead of maintaining a complicated lookup table. To assist customers in creating the Voice Prompts, a software tool, the ISD61S00 Voice Prompt Editor and writer are available for development purposes.

#### 11.2.2 Voice Macros

Voice Macros are a powerful voice script that allows users to customize their own play patterns such as play Voice Prompts, play message, insert silence, change the master sample clock, power-down the device and configure the signal path, including gain and volume control. Voice Macros are executed using a single SPI command and are accessed using the same index structure as Voice Prompts. This means that a Voice Macro (or Voice Prompt) can be updated on the ISD61S00 without the need to update code on the host micro-controller since absolute addresses are not needed.

The following locations have been reserved for three special Voice Macros:

Index 0: Power-On Initialization (POI)

Index 1: Power-Up (PU)

Index 2: GPIO WakeUp

These Voice Macros allow the users to customize the ISD61S00 power-on and power-up procedures and are executed automatically when utilized. The built-in voice macros will be used when they are not utilized. Please see Section 12 for details.

Here is an example to illustrate the usage of the PU Voice Macro.

- WR_CFG_REG(0x05,0x01)
- WR_CFG_REG (0x06,0x02)
- FINISH

The above PU Voice Macro will perform the following:

• Set up a feed-through path from ANAIN to AUDOUT

The following is the complete list of the commands for Voice Macro:

- WR_CFG_REG(reg, *n*) Set configuration register reg to value *n*.
- PWR_DN Power down the ISD61S00.
- PLAY_VP(i) Play Voice Prompt index i.
- PLAY_VP@Rn Play Voice Prompt at the index *i* contained in Register n.
- PLAY_VP_LP(I) Play Voice Prompt index I with looping
- PLAY_VP@Rn_LP Play Voice Prompt at the index *i* contained in Register n with looping
- PLAY_MSG@(sec-addr) Play message starting at sector address sec-addr

### nuvoTon

- $PLAY_SIL(n) Play$  silence for *n* units. A unit is 32ms at master sampling rate of 32 kHz.
- WAIT_INT Wait until current play command finishes before executing next macro instruction.
- EXE_VM Put EXE_VM in a Voice Macro will force to jump to this VM
- EXE_VM@Rn Put EXE_VM@Rn in a Macro will force to jump to this VM@Rn
- FINISH Finish the voice macro and exit.

#### 11.2.3 User Data

User Data consist of 4kByte chunks of erasable sectors defined and allocated by the users for use in other applications. The users have the freedom not to allocate or reserve any memory sectors. A software tool, the ISD61S00 Voice Prompt Editor is available to assist customers in allocating such memory.

#### 11.2.4 Reserved Sectors

Reserved sectors consist of 4kByte chunks of erasable sectors reserved for the Empty Messages and Re-recordable Messages. The Empty Message is an empty sector made of a 4kByte memory sector reserved for message recordings. A SPI record command pointing to the Empty Message starts the message recording into the Empty Message and will continue to record messages in the free memory located in Recording Memory if the message recording is over 4kBytes. The users can send a play, erase or record command pointing to the Empty Message to play, erase the entire message or re-record a brand new message.

The Re-recordable Message, a 4kByte memory sector contains message recordings and a sector address pointer (see Section 11.3 for details) pointing to the message sector located in Recording Memory. Unlike the Empty Message where no message has been recorded, the users can play back a complete message by issuing a SPI play command pointing to the Re-recordable Message. The users can also send an erase or record command pointing to the Re-recordable Message to erase the entire message or re-record a brand new message.

#### 11.2.5 Message Recordings

Message Recordings are messages that can be recorded, played and erased "on the fly" by the users. These messages are recorded in 4kByte chunks of erasable sectors with each message sector containing a header pointing to the next message sector. The ISD61S00's unique message management architecture allows users to record messages without specifying an address. The ISD61S00 will start recording at the first available sector in Recording Memory and continue to record into free memory until memory is full or a STOP command is issued. Upon completion of the record operation, the users need to read back the message sector start address for subsequent playback.

To playback the message recordings, the users need to send a play command pointing to the message sector start address. For partial message playback, the users can send a play command with a sector offset.

To erase the message recordings, the users need to send an erase command pointing to the message sector start address.

A list of commands for Message Recordings are detailed below:

- REC_MSG starts a record operation.
- STOP stops current record operation.
- READ_STATUS wait until record operation is finished as indicated by the CMD_FIN bit.
- READ_INT clear the interrupt.

### nuvoTon

- READ_MSG_ADD This command returns a three byte starting address (*A*) of the message along with a two byte sector length. Use *A* to address the message in subsequent playback operations.
- PLAY_MSG@(A) Play back the message.
- READ_STATUS poll status until CMD_FIN bit is set indicating play has finished.
- READ_INT clear the interrupt.
- ERASE_MSG@(A) erase the message.
- READ_STATUS poll status until CMD_FIN bit is set indicating erase has finished.
- READ_INT clear the interrupt.

#### **11.3 Memory and Message Headers**

The Memory and Message headers are located at the initial bytes of the 4kByte memory sector used to determine the format or function of the memory. The Memory Header stores users' configurable information including the memory protection scheme, the RMP and PMP pointers and the index table including POI, PU and other Voice Macros defined by the users. The Message Header located in both Reserved Sectors and Recording Memory stores the information for the device to determine what memory is available for recording and where the subsequent messages are stored.

#### 11.3.1 Memory Header

	Initial Bytes of the Memory Header										
Byte0	Byte1-2	Byte3-4	Bytes5-10	Bytes11-16	Byte17-22	Byte23-28					
					GPIO_WA						
0xCX	RMP[7:0]	PMP[7:0]	POI_VM	PU_VM	KEUP	VM/VP[3]					

Table 11-1 Memory Header

The Memory Header contains at least seventeen bytes located at the beginning of the memory space. Byte0 determines whether or not the memory contains a Reserved Memory block as well as the memory protection scheme is used. Byte1-2 and Byte3-4 store the RMP and PMP pointers respectively. After the PMP, it is the start of the Voice Prompt/Voice Macro index table defined by the users. This table consists of six byte entries that are the start and end address of Voice Prompt or Voice Macro. Byte5-10, Byte11-15 & Byte 17-22 are reserved for the POI, PU and GPIO_WAKEUP Voice Macro which are the first three entries in this table (index 0, index 1 and index 2) to be executed on power-on initialization, power-up and GPIO_WAKEUP respectively. If this function is not desired, these entries should be left erased (0xFFFFF,0xFFFFF). When a PLAY_VP(i) or EXE_VM(i) command is sent to the ISD61S00, it reads the index table entry at address 6i+5 and executes the VP or VM at the address present in the table.

If the first byte Byte0 of the memory header is 0xFF, it means that no Reserved Memory is allocated, no memory protection is enabled and the whole memory will be available for record and playback only. To allocate the Reserve Memory, the bit4 of the Byte0 has to be set to zero. When Reserved Memory is allocated and memory protection is enabled upon users' definition, the both RMP (Recording Memory Pointer) and PMP (Protected Memory Pointer) will then created and stored at Byte1-2 and Byte3-4 of the Memory Header respectively. The ISD61S00 will not attempt to use memory before the RMP for

nuvoTon

message recordings. This memory thus can be used for Voice Prompts, Voice Macros, User Data and Reserved Sectors. The PMP points to the boundary of protected memory and is used in conjunction with the RP, WP and CEP bits to set memory protection indicated below (also see Section 11.6 for details).

	Memory Header Byte										
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0											
1	1	0	0	1	RP	WP	CEP				

Table 11-2 The first by	te of the Memory Header
-------------------------	-------------------------

#### 11.3.2 Message Header

	Message Header Byte										
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
BOM	EOM	RSVD	-	-	-	-	-				

Table 11-3 Message Header

The ISD61S00 adopts a sector-based message management scheme that treats each 4kByte sector as a message frame. Each sector has a header indicating the state of the frame:

- BOM: "0" indicates that this sector is the beginning of a message.
- EOM: "0" indicates that this sector is the end of a message.
- RSVD: "0" indicates that there is a message recorded in this sector or this sector has been reserved for User Data.

Thus the number of the BOMs counted by scanning the Message Header of the Recording Memory will tell the number of the messages recorded in the ISD61S00.

When a sector is not an EOM sector, the next two bytes in the frame are the sector address pointing to the subsequent message. Thus the whole message can be re-composed by tracing sector address until an EOM is found.

It is not recommended to reserve the User Data inside the Recording Memory. However, for those instances where User Data needs to be allocated inside the Recording Memory, it is imperative that the RVSD has set and maintained at "0". Otherwise, there is a risk that the User Data may be over-written by subsequent recordings.

#### 11.4 Digital Access of Memory

ISD61S00 memory can be accessed as conventional digital memory using the DIG_READ and DIG_WRTIE SPI commands. This allows the user to:

- Reserve areas of memory for use as digital non-volatile memory as User Data
- Update Voice Prompts and macros (pre-recorded audio) in system.
- Read and verify Voice Prompt memory.
- Read sector headers of memory to determine memory usage.

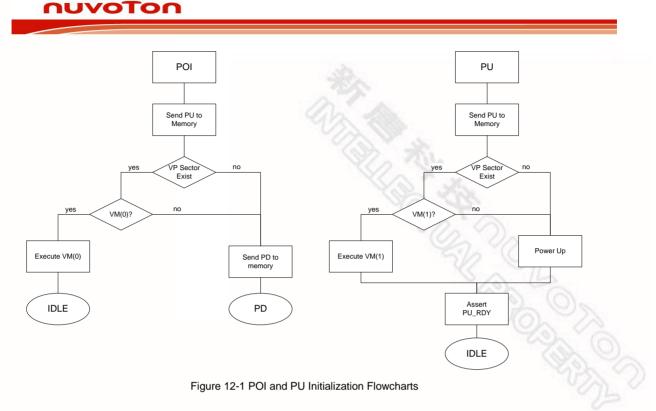
## nuvoton

The digital read and write commands can be issued even while an audio record or playback is in progress. The RDY/BSYB pin governs the flow control for all digital operations.

#### 11.5 Device Erase Commands

ISD61S00 provides several ways to erase the flash memory. The flash memory has a minimum erasable sector size of 4kBytes. The sector erase command is sent with a start and stop sector address. The ISD61S00 also has commands to mass erase the memory.

#### **11.6 Memory Contents Protection**


Under certain circumstances, it is desirable for the users to protect portions of the internal memory from write/erase or interrogation (read). The ISD61S00 provides a method to achieve this by setting a protection memory pointer (PMP) that allows the users to protect internal memory for an address range from the beginning of memory to this sector where PMP is pointed. The type of protection is set by three bits in the memory header byte.

- The **CEP** (Chip Erase Protect) bit set to zero enables chip erase protection. This prevents a mass erase function, allowing the device to be configured as a write-once part. With the CEP bit set to one, even with write protection enabled, the part can be mass erased. After mass erasure, the initial sector byte defaults to no protection so the device can be re-programmed.
- The WP (Write Protect) bit set to zero enables write protection of the internal memory below the sector pointed to by the PMP. Write protection means that digital write or erase commands will not function in this memory area. This can be used to ensure that audio or data is not inadvertently erased or overwritten. The WP bit does not stop the execution of a REC_MSG@ or ERASE MSG@ to messages with BOM headers in this memory.
- The RP (Read Protect) bit set to zero enables read protection of the internal memory below the sector pointed to by the PMP. Read protection means that digital read or audio playback commands through SPI or I²S will not function in this memory area. This can be used to ensure that internal memory contents cannot be digitally copied or read.

Memory protection is activated on power-up of the chip. Therefore, each time the user changes the setting of memory protection, the new setting will not be effective until the chip is reset.

#### **12. DEVICE INITIALIZATION**

Whenever the ISD61S00 detect as power-on reset condition or a high on the RESET pin of the device it begins a power-on initialization (POI) sequence. Whenever the ISD61S00 receives a power up command (PU) when it is in a power down state, it begins a power-up initialization (PU) sequence. Voice Macros VM(0) and VM(1) are reserved for POI and PU initialization routines. If no reserved memory exists or if the vectors VM(0) or VM(1) are not set, then a default routine is executed. The default sequence for POI is to power-down the ISD61S00. The default PU sequence is to power up and go to IDLE state. M.



### **13. APPLICATION REFERENCE SCHEMATICS**

The bottom part of Figure 13-1 shows a reference design for a PSTN interface to the ISD61S00. Two analog signal paths are provided for monitoring audio signals on TIP and RING. The Type 1 CID is for monitoring TIP and RING in an on-hook state to receive CID information. The Type II CID and speech interface is through a balanced configuration along with the output driver for use when the signal path is off-hook. Also included are optional circuits for line detection, ring detection and pulse dialing.

The Figure 13-2 illustrates a reference design for connecting the ISD61S00 to an integrated silicon DAA.

#### 13.1 PCB Layout Guidelines

To gain maximum performance from the ISD61S00 it is important to provide clean analog supplies to the device. Separate Vcca and Vssa returns to the board low impedance point are essential for noise isolation. Good quality low ESR decoupliling capacitors on the supplies along with filter capacitors on Vbg and Vmid are also important for optimal performance. Care in shielding MIC connections from noise sources is imperative, these connections should be as short as possible and shielded with Vssa. The speaker and PO connections carry high currents and should be made as wide as possible. The TI inputs are differential and should be run as a pair and shielded with Vssa. The flash SPI bus is a high speed serial bus and connections should be routed to the flash device in equal and short traces.

ηυνοτοη

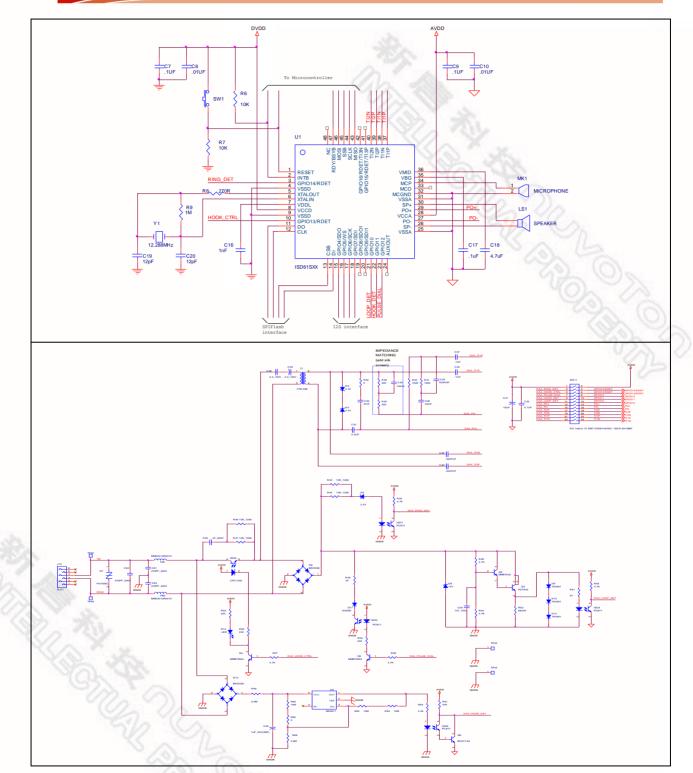



Figure 13-1 Application Reference Schematic with discrete DAA



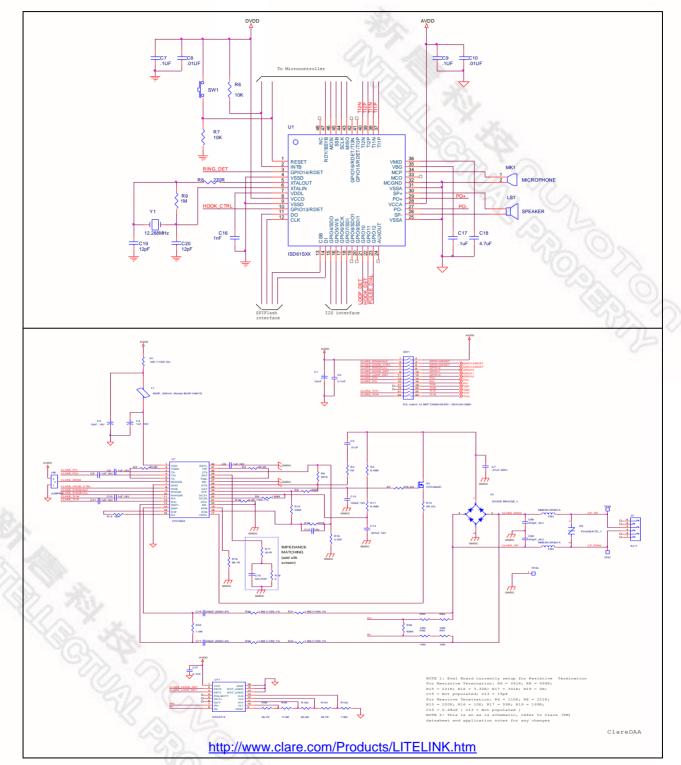
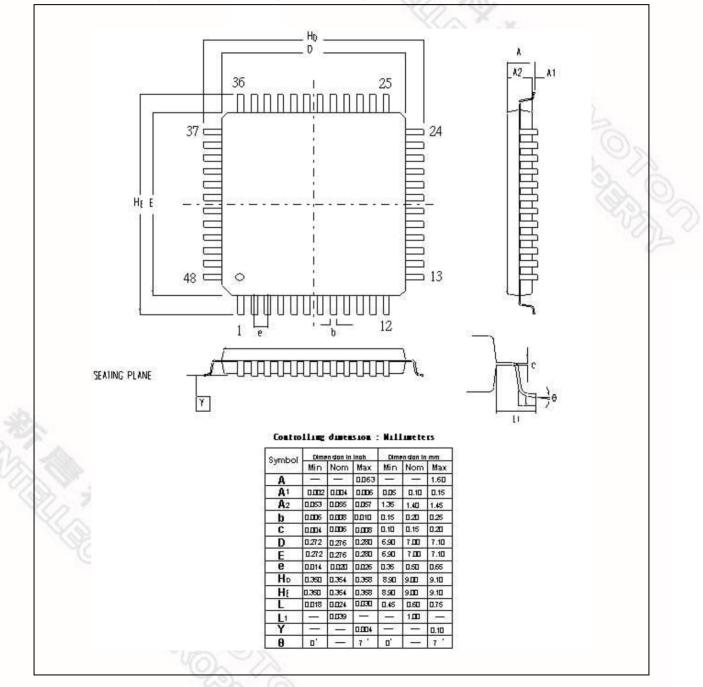




Figure 13-2 Application Reference Schematic with integrated Clare DAA



### **14. PACKAGE SPECIFICATION**

#### 14.1 LQFP48L (7x7x1.4mm footprint 2.0mm)





### **15. ELECTRICAL CHARACTERISTICS**

#### **15.1 Absolute Maximum Ratings**

Condition	Value
Junction temperature	150°C
Storage temperature range	-65 [°] C to +150 [°] C
Lead temperature (soldering – 10 seconds)	300°C
LQFP-48L Thermal Resistance, typical	76 C/W (ASE) 60C/W (Greatek) TBD
Voltage applied to any pin	$(V_{SS} - 0.3V)$ to $(V_{DD} + 0.3V)$
Input current applied to any digital input pin	+/- 10 mA
ESD (Human Body Model)	2000 V
V _{DD} - V _{SS}	-0.5V to +3.63V
V _{DDL} - V _{SS}	-0.5V to + 1.98V
Device Power Dissipation	0.18 Watt (TBC)

• Stresses above those listed may cause permanent damage to the device. Exposure to the absolute maximum ratings may affect device reliability. Functional operation is not implied at these conditions.

#### **15.2 Operating Conditions**

#### **OPERATING CONDITIONS (INDUSTRIAL PACKAGED PARTS)**

CONDITIONS	VALUES
Operating temperature range (Case temperature)	-40°C to +85°C
Supply voltage (V _{DD} ) ^[1]	+2.7V to +3.6V
Ground voltage (V _{ss} ) ^[2]	0V
Input voltage (V _{DD} ) ^[1]	0V to 3.6V
Voltage applied to any pins	$(V_{SS}$ –0.3V) to $(V_{DD}$ +0.3V)

NOTES:

 $[1] V_{DD} = V_{CCA} = V_{CCD}$  $[2] V_{SS} = V_{SSA} = V_{SSD}$ 

Publication Release Date: March 10, 2011 Revision 2.7



### 15.3 DC Parameters

PARAMETER	SYMBOL	MIN	<b>TYP</b> ^[1]	MAX	UNITS	CONDITIONS
Supply Voltage	V _{DD}	2.7	10	3.6	V	
Input Low Voltage	V _{IL}	V _{SS} -0.3	1	$0.3 x V_{DD}$	V	
Input High Voltage	V _{IH}	$0.7 \mathrm{xV}_{\mathrm{DD}}$		V _{DD}	V	
Schmitt trig. Low to High threshold point	VT+	1.49	1.54	1.58	V	
Schmitt trig. high to low threshold point	VT-	1.24	1.29	1.34	V	20.
Pull-up resistor	R _{PU}	38	54	83	kΩ	105
Pull-down resistor	R _{PD}	25	49	110	kΩ	200
Output Low Voltage	V _{OL}			0.4	V	I _{OL} = 3μA
INTB Output Low Voltage	V _{OL1}			0.4	V	×2 0
Output High Voltage	V _{OH}	2.4			V	I _{OH} = -10µА
Internal logic supply	V _{DDL}	1.65	1.8	1.95	V	-OP
Analog outputs DC level	V _{DC}		AV _{DD} /		V	@ +27C
Half supply reference	V _{MIB}		1.65		V	AV _{DD} = 3.3V @ +27C
Bandgap reference	V _{BG}		1.218		V	AV _{DD} = 3.3V @ +27C
Operating Current (outputs loaded: 8 Ohm 120 Ohm)	I _{DD_MAX}		150		mA	$AV_{DD}$ = 3.6V, Loaded, Sampling freq = 8 kHz, all blocks enabled, full scale.
Operating Current (outputs not loaded: 8 Ohm 120 Ohm)	I _{DD_MAX}		45		mA	$AV_{DD}$ = 3.6V, No load, Sampling freq = 8 kHz, all blocks enabled, full scale.
Standby Current	I _{SB}		11	20	μA	AV _{DD} = 3.6V @ +27C
Input Leakage Current	IIL			±10	μA	Force AV _{DD}

- 201 -

Notes: ^[1] Conditions  $V_{DD}$ =3.3V, T_A=25°C unless otherwise stated

## nuvoTon

### **15.4 Analog Transmission Characteristics**

AVDD=3.3V ; V_{SS}=0V; T_A=+27°C; All ADC tests using Auxiliary input mode @ 0dB gain

PARAMETER	SYM	YM CONDITION			ISMIT DC)		EIVE AC)	UNIT
				MIN	MAX	MIN	MAX	
DC level	V _{DC}	DC level on the outputs SPP – SPN; POP - PON	AV _{DD} /2	a	-	1.35	1.8	V
Full Scale Level	T _{XMAX}	ADC (single ended) DAC (differential)	1.35 2.7	1.05 2.1	5-20	1.05 2.1		V _{PK} V _{PK}
Absolute Gain	G _{ABS}	-3dBFS @ 1020 Hz, AVDD =3.3V; T _A =+25°C;	0	-0.40	+0.40	-0.40	+0.40	dB
Absolute Gain variation with Supply Voltage	G _{ABSS}	$\begin{array}{l} AVDD{=}3.13V \;-\; 3.47V; \; -\\ 3dBFS @ 1020 \; Hz; \\ T_A{=}{+}25^{\circ}C \end{array}$	0	-0.50	+0.50	-0.50	+0.50	dB

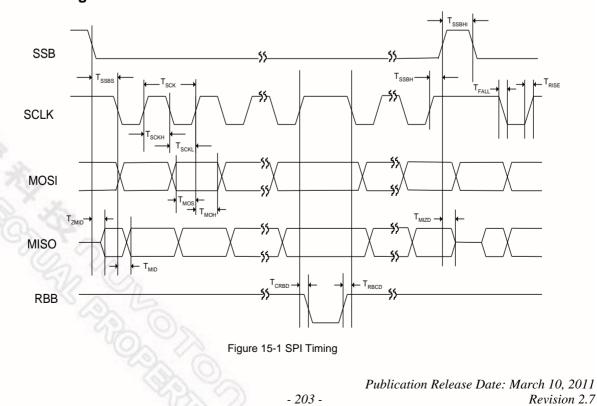
### 15.5 Analog Distortion and Noise Parameters

All ADC tests using Auxiliary input mode @ 0dB gain

#### 15.5.1 8kHz sampling

AVDD=3.3V; V_{SS}=0V; T_A=+27°C; 8kHz sampling, high OSR selected (0x040[5]=1'b1), dither turned off (0x151[0]=1'b0, 0x141[0]=1'b0)

PARAMETER	SYM	CONDITION	TRA	NSMIT (	A/D)	RECEIVE (D/A)			UNIT
PARAMETER	5111	CONDITION	MIN	ТҮР	MAX	MIN	ТҮР	MAX	UNIT
Signal to Noise Ratio	SNR	Idle channel A-weighted	80	90		80	90		dB
Total Harmonic Distortion	THD	-3dBFS @ 1020 Hz, 8Ohm speaker load A-weighted		-80	-75		-70	-60	dB
Frequency Response	F _{low}	-3dB Low pass cut-off		3.36			3.36		kHz
Power Supply Rejection	PSRRA	V _{CCA} ; 35mVrms DC to 3.4 kHz A-weighted		50			50		dB
Publication Release Date: March 10, 2011 - 202 - Revision 2.7									


## ηυνοτοη

#### 15.5.2 16kHz sampling

AVDD=3.3V;  $V_{SS}$ =0V;  $T_A$ =+27°C; 8kHz sampling, high OSR selected (0x040[5]=1'b1), dither turned off (0x151[0]=1'b0, 0x141[0]=1'b0)

PARAMETER	SYM	CONDITION	TRA	TRANSMIT (A/D)			RECEIVE (D/A)		
FARAMETER	3111	CONDITION	MIN	ΤΥΡ	MAX	MIN	ΤΥΡ	MAX	UNIT
Signal to Noise Ratio	SNR	Idle channel A-weighted	80	90	N.	80	90		dB
Total Harmonic Distortion	THD	-3dBFS @ 1020 Hz, 8Ohm speaker load A-weighted		-80	-75	N,	-70	-60	dB
Frequency Response	F _{low}	-3dB Low pass cut-off		6.73			6.73	200	kHz
Power Supply Rejection	PSRR _A	V _{CCA} ; 35mVrms DC to 6.8 kHz A-weighted		50			50	(A)	dB

### 15.6 SPI Timing





SYMBOL	DESCRIPTION	MIN	ТҮР	MAX	UNIT
Т _{SCK}	SCLK Cycle Time	100	·		ns
Т _{SCKH}	SCLK High Pulse Width				ns
T _{SCKL}	SCLK Low Pulse Width	45 45			ns
T _{RISE}	Rise Time for All Digital Signals			10	ns
T _{FALL}	Fall Time for All Digital Signals	SZA		10	ns
T _{SSBS}	SSB Falling Edge to 1 st SCLK Falling Edge Setup Time	60	5	C.	ns
T _{SSBH}	Last SCLK Rising Edge to SSB Rising Edge Hold Time	30	2	20-14	ns
T _{SSBHI}	SSB High Time between SSB Lows	50		6	ns
T _{MOS}	MOSI to SCLK Rising Edge Setup Time	45			ns
Т _{мон}	SCLK Rising Edge to MOSI Hold Time	15			ns
T _{ZMID}	Delay Time from SSB Falling Edge to MISO Active			12	ns
T _{MIZD}	Delay Time from SSB Rising Edge to MISO Tri-state			12	ns
T _{MID}	Delay Time from SCLK Falling Edge to MISO			40	ns
T _{CRBD}	Delay Time from SCLK Rising Edge to RBB Falling Edge			12	ns
T _{RBCD}	Delay Time from RBB Rising Edge to SCLK Falling Edge	0			ns

### 15.7 Recommended Clock/Crystal Specification

The following crystal or external master clock specifications are recommended for a correct operation. THE

Demonster		Limit valu	TT	Q 114	
Parameter	Min.	Тур.	Max.	Unit	Condition
Frequency	7.56	12.288	32.768	MHz	Fundamental mode
Load capacitance		18		pF	
Dynamic capacitance Cc		22.12		fF	
Resonance resistance Rc		40		Ω	
Electrostatic capacitance		5.1		pF	
	N.C.C.	- 204 -	Pul	olication Releas	e Date: March 10, 2 Revision



#### 15.8 Dual Tone Alert Signal (CAS)

AC Electrical Characteristics - Dual Tone Alert Signal Detection

DESCRIPTION	SYM.	MIN	ТҮР	MAX	UNITS	NO TEST
Low tone frequency	$f_L$	abs.	2130		Hz	
High tone frequency	f _H	1	2750	1	Hz	
Frequency deviation acceptation		± 1.0	N/S	± 3.0	%	1
Frequency deviation rejection		± 3.5	Ya	202	%	2
Accept signal level per tone		-40 -37.78	)~	-2 0.22	dBV dBm	S/N=20 3, 5, 7
Reject signal level per tone				-46 -43.78	dBV dBm	S/N=20 4, 5, 7
Positive and negative Twist accept		-10		10	dB	S/N=20 6, 7
Signal to Noise Ratio		20			dB	5, 6, 7

NOTES:

1. The range within which tones are accepted.

2. The range outside of which tones are rejected.

3. This applies BT specification that has covered the requirements of Bell core.

 This applies MITEL MT8843 specification. Winbond W91030A: -44 dBm, newave NW6006: -47 dBV and CLI CMX602A: -46 dBV.

5. These characteristics are for AVDD=3.3V and 25°C.

6. Both tones have the same amplitude and at the nominal frequencies.

$$Twist = 20 \log \left(\frac{f_{H}amplitude}{f_{L}amplitude}\right)$$

6. Band limited random noise 300~3400 Hz. Measurement valid only when the tone is present.

AC Timing Characteristics - Dual Tone Alert Signal Detection

Symb ol	DESCRIPTION	MIN	ТҮР	MAX	UNITS	NOTES
t _{CASDP}	Alert signal present detect time	0.5	1.88	10	ms	1
t _{CASDA}	Alert signal absent detect time	0.5	1.46	10	ms	2

NOTES:

- 1.  $t_{CASDP}$  Typical time corresponding to 4 cycles of low tone
- 2.  $t_{CASDA}$  Typical time corresponding to 4 cycles of high tone

## ηυνοτοη

### 15.9 FSK Detection - 1200baud Bell 202, ITU V.23, 300 baud Bell 103, ITU V.21

AC Electrical Characteristics - FSK Detection

DESCRIPTION	SYM.	MIN	ТҮР	MAX	UNITS	NOTES
Input frequency detection			SCI Y			
Bell 202 '1' (Mark)	f _{MARK}	1188	1200	1212	Hz	
Bell 202 '0' (Space)	$\mathbf{f}_{\mathrm{SPACE}}$	2178	2200	2222	25.	
ITU-T V.23 '1' (Mark) ITU-T V.23 '0' (Space)		1280.5 2068.5	1300 2100	1319.5 2131.5	at a	
Transmission Rate			1200	- Co	Baud	±1%
			150		Baud	±1%
			75		Baud	±1%
Input detection level per tone		-40 -37.78		-6.2 -4.0	dBV dBm	S/N=20 1,3
Reject signal level per tone				-48 -45.78	dBV dBm	S/N=20 1,3
Positive and negative Twist accept		-10		10	dB	S/N=20 2,3
Signal to Noise Ratio		20			dB	S/N=20 3

DESCRIPTION	SYM.	MIN	TYP	MAX	UNITS	NOTES
Input frequency detection						
Bell 103 '1' (Mark), high band	f _{MARK}	2213	2225	2237	Hz	
Bell 103 '0' (Space), high band	f _{space}	2013	2025	2037	Hz	
Bell 103 '1' (Mark), low band	f _{MARK}	1258	1270	1282	Hz	
Bell 103 '0' (Space), low band	f _{space}	1058	1070	1082	Hz	
ITU-T V.21 '1' (Mark), high band	f _{MARK}	1638	1650	1662	Hz	
ITU-T V.21 '0' (Space), high band	$\mathbf{f}_{\mathrm{SPACE}}$	1838	1850	1862	Hz	
ITU-T V.21 '1' (Mark), low band	f _{MARK}	968	980	992	Hz	
ITU-T V.21 '0' (Space), low band	f _{space}	1168	1180	1192	Hz	
Transmission Rate			300		Baud	$\pm 1\%$
She was			110		Baud	$\pm 1\%$
Input detection level non-tone		-40		-6.2	dBV	S/N=20
Input detection level per tone		-37.78		-4.0	dBm	1,3
Deiget signal level per tens				-48	dBV	S/N=20
Reject signal level per tone	0			-45.78	dBm	1,3
Positive and negative Twist accept	N.C.	-10		10	dB	S/N=20

- 206 -

### nuvoTon

		100		2,3
Signal to Noise Ratio	20	、参	dB	S/N=20 3

NOTES:

- 1. These characteristics are for AVDD=+3.3V and 25°C.
- 2. Both mark and space have the same amplitude and at the nominal frequencies.

$$Twist = 20 \log \left( \frac{\text{amplitude of } f_{MARK}}{\text{amplitude of } f_{SPACE}} \right)$$

 Band limited random noise (200~3400 Hz). Measurement is valid only when the FSK signal is present. Note that the BT band is 300~3400 Hz, while the Bellcore band is 0~4K Hz.





#### 15.10 FSK Transmitter - Bell 202, ITU-V.23, Bell 103, ITU-V.21

Modulation rates and characteristic frequencies for the forward data-transmission channel

DESCRIPTION	SYM	MIN	TYP	MAX	UNITS	NOTES
Twist		-0.5	0	0.5	%	
Baud Rate			1200	251	Baud	±1%
Bell 202			×Q.	3 × ×	-	
"1" (Mark)	$f_{\scriptscriptstyle M\!ARK}$	1197	1200	1203		$\pm 3Hz$
"0" (Space)	$f_{SPACE}$	2197	2200	2203	12an	±3Hz
V.23				8		
"1" (Mark)	$f_{MARK}$	1297	1300	1303	1000	±3Hz
"0" (Space)	$f_{SPACE}$	2097	2100	2103	NO	±3Hz

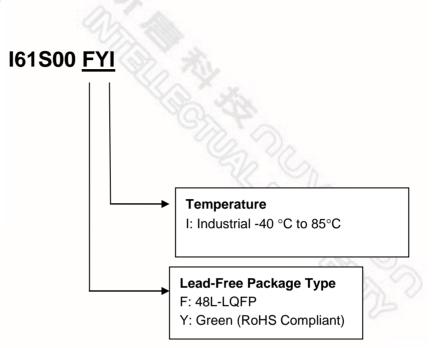
DESCRIPTION	SYM	MIN	TYP	MAX	UNITS	NOTES
Twist		-0.5	0	0.5	%	"on
Baud Rate			300		Baud	±1%
			110		Baud	±1%
Bell 103						
"1" (Mark), high band	$f_{\it MARK}$	2222	2225	2228		±3Hz
"0" (Space), high band	$f_{SPACE}$	2022	2025	2028		$\pm 3Hz$
"1" (Mark), high band	$f_{MARK}$	1267	1270	1273		±3Hz
"0" (Space), high band	$f_{SPACE}$	1067	1070	1073		±3Hz
V.21						
"1" (Mark), high band	$f_{\it MARK}$	1647	1650	1653		$\pm 3Hz$
"0" (Space), high band	$f_{SPACE}$	1847	1850	1853		$\pm 3Hz$
"1" (Mark), low band	$f_{\rm MARK}$	977	980	983		$\pm 3Hz$
"0" (Space), low band	$f_{SPACE}$	1177	1180	1183		±3Hz

*Tx signal % baud or bit rate accuracy is the same as XTAL/CLOCK % frequency accuracy. A CONTRACTOR



#### 15.11 DTMF Detection

AC Electrical Characteristics - DTMF detection


Description	Sym	Min	Тур	Max	Units	Notes
Frequency Deviation Acceptation		1	272	±2.0	%	
Frequency Deviation Rejection		±3.5	X	1. 11	%	
Accept signal level per tone		-36	10	-6	dBm	
Reject signal per tone			1	-46	dBm	
Positive and negative Twist accept				10	dB	S/N=20
Signal to Noise Ratio		20		S	dB	



Publication Release Date: March 10, 2011 Revision 2.7



### **16. ORDERING INFORMATION**





- 210 -



#### **17. REVISION HISTORY**

VERSI ON	DATE	PAGE	DESCRIPTION
2.00	November 28, 2008		Release as Design Guide.
2.01	October 2009 – not yet released		<ul> <li>Update AGC parameters.</li> <li>Update AGC description.</li> <li>Description in READ_STATUS command, number of status bytes.</li> </ul>
2.5	May 5 th , 2010		<ul><li>Update pin-out diagram.</li><li>Update block diagram.</li></ul>
2.6	Oct 22 nd , 2010		Add table of supported serial flash memory.
2.7	Mar 10, 2011		Update SPI timing.

#### Important Notice

Nuvoton products are not designed, intended, authorized or warranted for use as components in systems or equipment intended for surgical implantation, atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, or for other applications intended to support or sustain life. Furthermore, Nuvoton products are not intended for applications wherein failure of Nuvoton products could result or lead to a situation wherein personal injury, death or severe property or environmental damage could occur.

Nuvoton customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Nuvoton for any damages resulting from such improper use or sales.

Please note that all data and specifications are subject to change without notice. All the trademarks of products and companies mentioned in this datasheet belong to their respective owners.

> Publication Release Date: March 10, 2011 Revision 2.7

## nuvoTon

Figure 3-1 ISD61S00 48-Lead LQFP Pin Configuration	12
Figure 8-1 SPI Data Transaction	35
Figure 8-2 R/B Timing for SPI Writing Transactions	35
Figure 8-3 SPI Transaction Ignoring RDY/BSYB	
Figure 8-4 Clock Generation Block Diagram	41
Figure 8-5 PMC/I2S signal routing	47
Figure 8-6 Microphone Voltage Gain Mode	57
Figure 8-7 Microphone Current Gain Mode	58
Figure 8-8 Current Mode Gain with Electret MIC model	59
Figure 8-9 Auxiliary Input Mode	60
Figure 8-10 TI Input Amplifier	61
Figure 8-11 Analog Output	63
Figure 8-12 DTMF Detector - Functional Block Diagram	65
Figure 8-13 DTMF Detector Acquisition Timing	66
Figure 8-15 Tone Generator Block Diagram	72
Figure 8-16 Architecture of Linear FSK Waveform Generator	77
Figure 8-17 Block Diagram of FSK Detector	86
Figure 8-18 band pass filter frequency response	95
Figure 8-19 Block Diagram of CAS Detection	100
Figure 8-20 Detector Biquad Low Tone Frequency Response	100
Figure 8-21 CAS Detector Biquad High Tone Frequency Response	101
Figure 8-22 CAS Internal IIR Filter Frequency Response Figure	103
Figure 8-23 FSK ATD IIR filter structure	107
Figure 8-24 FSK encoder IIR filter structure	108
Figure 8-25 Band Pass filter frequency response of voice energy detection	115
Figure 8-26 Call progress tone band-pass filter frequency response	117
Figure 8-27 Block diagram of ring detector	120
Figure 8-28 The timing of ring detector with RNG_CTRL[1:0]=2'b11	120
Figure 8-29 Gain/Mixer Channel	125
Figure 8-30 CODEC/EC Gain Stages	125
Figure 8-31 Gain Stages and Mixer with Control Addresses	128
Figure 8-33 Ringer Tone Generator Block	137
Figure 9-1: Signal flow through the Acoustic Echo Canceller (AEC) in the speech Processor	140
Figure 9-2: Signal flow through the Line Echo Canceller (LEC) in the speech Processor	140
Figure 9-3 AGC Operation regions.	161
Figure 10-1 SPI Record	177
Publication Release Date: March 2 - 212 - Revi	10, 2011 ision 2.7

## ηυνοτοη

Figure 10-2 SPI Feed-through	. 177
Figure 10-3 SPI Playback	. 178
Figure 10-4 Feed-through SPI	. 179
Figure 10-5 SPI Send Compressed Data to Decode	. 181
Figure 10-6 SPI Received Encoded Data	. 182
Figure 11-1 ISD61S00 Memory Format	. 190
Figure 12-1 POI and PU Initialization Flowcharts	. 196
Figure 13-1 Application Reference Schematic with discrete DAA	. 197
Figure 13-2 Application Reference Schematic with integrated Clare DAA	. 198
Figure 15-1 SPI Timing	. 203



## nuvoTon

Table 7-1 Status Register Description		
Table 7-2 Interrupt Status Register Description		
Table 7-3 Interrupt Status Register Description	9/2	
Table 7-4         Timer interrupt and operation status		
Table 8-1 COMP_CFG Register Compression Type		
Table 8-2 CFG0 Sample Rate Control		
Table 8-3: PLL Frequency Examples		
Table 8-4 Microphone and Auxiliary mode settings		
Table 8-5 Microphone Gain settings		
Table 8-6 Microphone Bias settings		
Table 8-7 Microphone Resistor settings		
Table 8-8 TI Gain Settings		
Table 8-9 TI MUX Settings		
Table 8-11 DTMF Frequency Deviation Register		
Table 8-12 Tone Generation Mode Setup		
Table 8-13 DTMF Frequency Mapping		
Table 8-14 FSK Encoder Specification Selection		
Table 8-15 FSK Detector Modes		
Table 8-16 FSK_CMP_CNT Definition.		
Table 8-17 CAS Detector Frequency Deviation Contro	ıl	
Table 8-18 CAS/ADT Detection Bits		
Table 8-21 Mixer Gain Registers		
Table 9-1 AEC/LEC Control Register Map		
Table 9-2 SC Gain Table		
Table 10-1 SPI Commands		
Table 10-2 Commands vs. Status		
Table 11-1 Memory Header		
Table 11-2         The first byte of the Memory Header		
Table 11-3 Message Header		
	- 214 -	Publication Release Date: March 10, 2011 Revision 2.7