$c \pi$ us

File No.:E134517

File No.:40027342

CONTACT DATA

Contact arrangement	1A, 1B	2A, 2B, 1A +1B
Contact resistance	$\begin{array}{r} \mathrm{AgNi}+\mathrm{Au} \text { plated: } 30 \mathrm{~m} \Omega \text { max.(at } 1 \mathrm{~A} 6 \mathrm{VDC} \text {) } \\ \mathrm{AgNi:} 50 \mathrm{~m} \Omega \max . \text { (at } 1 \mathrm{~A} 6 \mathrm{VDC}) \\ \left.\mathrm{AgSnO}_{2}+\mathrm{Au} \text { plated: } 60 \mathrm{~m} \Omega \text { max.(at } 1 \mathrm{~A} 6 \mathrm{VDC}\right) \\ \mathrm{AgSnO} 2: 80 \mathrm{~m} \Omega \text { max.(at } 1 \mathrm{~A} 6 \mathrm{VDC}) \end{array}$	
Contact material		$\mathrm{AgSnO}_{2}, \mathrm{AgNi}$
Contact rating (Res. load)	10A 250VAC/30VDC	8A 250VAC/30VDC
Max. switching Voltage	277VAC	277VAC
Max. switching current	10A	8A
Max. switching power	2500VA	2000VA
Mechanical endurance		$1 \times 10^{7} \mathrm{OPS}$
Electrical endurance	1A, 1B type: 1×10 Resistive load., at 70 $1 \mathrm{~A}+1 \mathrm{~B}, 2 \mathrm{~A},$ (8A 25 at 70	5ops (10A 250VAC, ${ }^{\circ} \mathrm{C}, 1.5 \mathrm{~s}$ on 1.5 s off) 2B type: 3×10^{4} OPs VAC, Resistive load., ${ }^{\circ} \mathrm{C}, 1.5 \mathrm{~s}$ on 1.5 s off)

CHARACTERISTICS

Insulation resistance		$1000 \mathrm{M} \Omega$ (at 500VDC)
Dielectric Strength	Between coil \& contacts	4000VAC 1min
	Between open contacts	1000VAC 1min
Operate time (at rated. volt.)		10ms max.
Release (Reset) time (at nomi. volt.)		10ms max.
Max. operate frequency (under rated load)		20 cycles /min
Temperature rise (at rated. volt.)		50 K max.
Vibration resistance		10 Hz to 55 Hz 1.5 mm DA
Shock resistance		$98 \mathrm{~m} / \mathrm{s}^{2}$
Humidity		5\% to 85\% RH
Ambient temperature		$-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Termination		PCB
Unit weight		Approx. 6 g
Construction		Plastic sealed, Flux proofed

Notes: The data shown above are initial values.

Features

- High switching capacity

1A, 1B: 10A 250VAC/30VDC;
$2 \mathrm{~A}, 2 \mathrm{~B}, 1 \mathrm{~A}+1 \mathrm{~B}: 8 \mathrm{~A} 250 \mathrm{VAC} / 30 \mathrm{VDC}$

- High sensitive
- 4 kV dielectric strength (between coil \& contacts)
- Single side stable and latching types available
- 1 Form A, 1 Form B, 2 Form A, 2 Form B and $1 A+1 B$ contact arrangement

RoHS compliant

COIL			
Type		Coil power	
		Sensitive	High sensitive
Single side stable	$1 \mathrm{~A}, 1 \mathrm{~A}+1 \mathrm{~B}$	Approx. 420mW	Approx. 200 mW
	2A		Approx. 280 mW
Single coils latching		Approx. 300 mW	Approx. 200 mW
Double coils latching		Approx. 420 mW	Approx. 280 mW
COIL D	ATA		at $23^{\circ} \mathrm{C}$

Single side stable

Nominal Voltage VDC	Pick-up Voltage VDC max.	Drop-out Voltage VDC min.	Coil Resistance $\times(1 \pm 10 \%) \Omega$		
	200 mW	280 mW	420 mW		
3	2.1	0.3	45	32.1	21.4
5	3.5	0.5	125	89.3	59.5
6	4.2	0.6	180	129	85.7
9	6.3	0.9	405	289	192.9
12	8.4	1.2	720	514	342.9
24	16.8	2.4	2880	2056	1371.4

Single coil latching

Nominal Voltage VDC	Set/Reset Voltage VDC max.	Pulse Duration ms min.	$\begin{aligned} & \text { Coil Resistance } \\ & x(1 \pm 10 \%) \Omega \end{aligned}$	
			300 mW	200 mW
3	2.1	50	30	45
5	3.5	50	83.3	125
6	4.2	50	120	180
9	6.3	50	270	405
12	8.4	50	480	720
24	16.8	50	1920	2880

HONGFA RELAY
ISO9001, ISO/TS16949, ISO14001, OHSAS18001, IECQ QC 080000 CERTIFIED

COIL DATA
Double coils latching

Nominal Voltage VDC	Set / Reset Voltage VDC max.	Pulse Duration ms	Coil Resistance $\times(1 \pm 10 \%) \Omega$	
	2.1	50	420 mW	280 mW
3	3.5	50	$21.4+21.4$	$32.1+32.1$
5	4.2	50	$59.5+59.5$	$89.3+89.3$
6	6.3	50	$85.7+85.7$	$129+129$
9	8.4	50	$192.9+192.9$	$289+289$
12	16.8	50	$342.9+342.9$	$514+514$
24	$2056+2056$			

SAFETY APPROVAL RATINGS

UL/CUL	1 Form A	AgNi	$\begin{array}{r} \hline \text { 10A 250VAC } \\ 8 \mathrm{~A} 30 \mathrm{VDC} \\ \text { 1/4HP 125VAC } \\ 1 / 3 \mathrm{HP} 250 \mathrm{VAC} \end{array}$
		AgSnO 2	10A 30VDC B300, R300 10A 250VAC 1/4 HP 125VAC 1/3 HP 250VAC
	2 Form A	AgSnO2, AgNi	$\begin{array}{r} 8 \mathrm{~A} 250 \mathrm{VAC} / 30 \mathrm{VDC} \\ \text { 1/4HP 125VAC } \\ \text { 1/3HP 250VAC } \\ \hline \end{array}$
		AgSnO 2	$\begin{array}{r} \hline 600 \mathrm{~W} \text { 125VAC } \\ \text { B300, R300 } \\ \hline \end{array}$
	1 Form A+1 Form B	AgSnO2, AgNi	$\begin{array}{r} 8 \mathrm{~A} 250 \mathrm{VAC} / 30 \mathrm{VDC} \\ \text { 1/4HP 125VAC } \\ \text { 1/3HP 250VAC } \end{array}$
		AgSnO 2	B300, R300
VDE (No UL approval on Single side stable version)	1 Form A	AgNi	10A 250VAC $(\cos \varnothing=1)$ 5A 250VAC $(\cos \varnothing=0.4)$
	2 Form A	AgNi	$\begin{array}{r} \text { 8A 250VAC }(\cos \varnothing=1) \\ 3.5 \mathrm{~A} 250 \mathrm{VAC}(\cos \varnothing=0.4) \end{array}$
	1 Form A+1 Form B	AgNi	8A 250VAC ($\cos \varnothing=1$) $3.5 \mathrm{~A} 250 \mathrm{VAC}(\cos \varnothing=0.4)$

Notes: 1) All values unspecified are at room temperature.
2) Only typical loads are listed above. Other load specifications can be available upon request.

ORDERING INFORMATION

Notes: 1) $1 \mathrm{H}, 2 \mathrm{H}$ means that relay is on the "reset" status when delivery; 1D, 2D means that relay is on the "set" status when delivery. There are no UL approval on 1D,2D version.
2) Under the ambience with dangerous gas like $\mathrm{H}_{2} \mathrm{~S}, \mathrm{SO}_{2}$ or NO_{2}, plastic sealed type is recommended; Please test the relay in real applications. If the ambience allows, flux proofed type is preferentially recommended. Contact is recommended for suitable condition and specifications if water cleaning or surface process is involved in assembling relays on PCB.
3) For the application with inrush current conditions, such as lamp load, motor load, capacitance load, coil load, etc., we suggest use the flux proof and no golden plated AgSnO_{2} contact version.
4) We recommend to choose the sensitive version (same part number, but with special suffix (412)) if the higher coil activation is allowable; Please choose the sensitive version (same part number, but with special suffix (412)) if the relay to be used in the extreme environment or welded by wave soldering; Please check with HF's engineer before designing the relay to your application if there are some requirements' outside the specification we provided.
5) The customer special requirement express as special code after evaluating by Hongfa. e.g. (359) stands for Lamp load

Outline Dimensions

Single side stable \& 1 coil latching

PCB Layout (Bottom view)

Single side stable \& 1 coil latching
2 coils latching

2 coils latching

Remark: 1) In case of no tolerance shown in outline dimension: outline dimension $\leqslant 1 \mathrm{~mm}$, tolerance should be $\pm 0.2 \mathrm{~mm}$; outline dimension $>1 \mathrm{~mm}$ and $\leqslant 5 \mathrm{~mm}$, tolerance should be $\pm 0.3 \mathrm{~mm}$; outline dimension $>5 \mathrm{~mm}$, tolerance should be $\pm 0.4 \mathrm{~mm}$.
2) The tolerance without indicating for PCB layout is always $\pm 0.1 \mathrm{~mm}$.
3) The width of the gridding is 2.54 mm .

Wiring Diagram (Bottom view)

Single side stable (Standard polarity)

1 Form A

2 Form A

$1 \mathrm{~A}+1 \mathrm{~B}$

1 coil latching (Standard polarity)

2 coils latching (Standard polarity)

1 Form B

2 Form A

2 Form B

Remark: The coil polarity of Reverse polarity and Standard polarity is opposite.

Notice

1. Relay is on the "reset" or "set" status when being released from stock, with the consideration of shock risen from transit and relay mounting, relay would be changed to "set" or "reset" status, therefore, when application (connecting the power supply), please reset the relay to "set" or "reset" status on request.
2. In order to maintain "set" or "reset" status, energized voltage to coil should reach the rated voltage, impulse width should be 5 times more than "set" or "reset" time. Do not energize voltage to "set" coil and "reset" coil simultaneously. And also long energized time (more than 1 min) should be avoided.
3. As the relay component part's will shrink and deformed due to the high temperature impact, our products are forbidden to be used at the temperature outside our suggested working temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$ for long time; If the wave soldering will be used, the operating parameters we will suggest are: Up limit of the pre-heating time: 120 s ; Up limit of the pre-heating temperature: $120^{\circ} \mathrm{C}$; Soldering temperatuer: $260^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$; Soldering time $(10 \pm 3) \mathrm{s}$; Besides our suggested parameters, please try to shorten the pre-heating time and the soldering time and try to lower the temperature for pre-heating and the soldering as you can; the manual soldering for such relay is more recommended.

Disclaimer

This datasheet is for the customers' reference. All the specifications are subject to change without notice.
We could not evaluate all the performance and all the parameters for every possible application. Thus the user should be in a right position to choose the suitable product for their own application. If there is any query, please contact Hongfa for the technical service. However, it is the user's responsibility to determine which product should be used only.

