15" XGA High brightness color TFT-LCD module

High brightness color	TFT-LCD module
Model: VM15	

Model control code: VM15BA V7

Date: Oct. 15th, 2018

Note: This specification is subject to change without notice

Customer :	
	Date :
Approved	Prepared
Date:	Date:

MODEL: VM15BA V7 Page: 1 /24 Doc. No:

Contents

- 1. Handling Precautions
- 2. General Description
- 3. Functional Block Diagram
- 4. Absolute Maximum Ratings
 - 4.1 Absolute Ratings of TFT LCD Module
 - 4.2 Absolute Ratings of Backlight Unit
 - 4.3 Absolute Ratings of Environment
- 5. Electrical characteristics
 - 5.1 TFT LCD Module
 - 5.2 Backlight Unit
- 6. Signal Characteristic
 - 6.1 Pixel Format Image
 - 6.2 The Input Data Format
 - 6.4 Interface Timing
 - 6.5 Power ON/OFF Sequence
- 7. Reliability Test
- 8. Shipping Label
- 9. Mechanical Characteristic

Applied Green Light, Inc.

RECORD OF REVISION

Vers	sion and Date	Page	Old description	New description	Remark
0.1	2018/1/2	All	First Edition for customer	·	
0.2	2018/1/9	6	LED Line = 20.1 W	LED Line = 26.1 W	
		13	I _{LED} = 270 mA	I _{LED} = 350 mA	
			PLED = 20.1 W	P _{LED} = 26.1 W	
0.3	2018/06/12	6	LED Line = 26.1W	LED Line: 20.94W	
		13	Pawerland LED coverings (AL) 1973 197 2 LED coverings (AL) 1973 197 2 LED coverings (AL) 1960 1994 2 LED covering (AL) 1960 1994 2 LED covering (AL) 1975	Personate Min Typ Max One Note	
0.4	2018 /10/15	13		Backlight life: 100,000 Hrs	

MODEL: VM15BA V7 Page: 3 /24 Doc. No:

Applied Green Light, Inc.

1. HANDLING PRECAUTIONS

- 1) Since front polarizer is easily damaged, pay attention not to scratch it.
- 2) Be sure to turn off power supply when inserting or disconnecting from input connector.
- Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- 4) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- 5) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface.
- 6) Since CMOS LSI is used in this module, take care of static electricity and insure human earth when handling.
- 7) Do not open or modify the Module Assembly.
- 8) Do not press the reflector sheet at the back of the module to any directions.
- 9) In case if a Module has to be put back into the packing container slot after once it was taken out from the container, do not press the center of TFTLCD panel.
- 10) At the insertion or removal of the Signal Interface Connector, be sure not to rotate nor tilt the Interface Connector of the TFT Module.
- 11) After installation of the TFT Module into an enclosure, do not twist nor bend the TFT Module even momentary. At designing the enclosure, it should be taken into consideration that no bending/twisting forces are applied to the TFT Module from outside. Otherwise the TFT Module may be damaged.

MODEL: VM15BA V7 Page: 4 /24 Doc. No:

AGL

Product Specification

Applied Green Light, Inc.

2. General Description

2.1, Overview

VM15BA V7 is a Color Active Matrix Liquid Crystal Display composed of a TFT-LCD display, a driver circuit, and a backlight system. The screen format is intended to support XGA(1024(H) x 768(V)) screen and 16.2M (RGB 8-bits) or 262k colors (RGB 6-bits). All input signals are LVDS interface compatible. The design rules of this module can correspond to PSWG standard.

2.2 Features

- Sunlight readable display, 1500nits.
- LED backlight
- Wide view angle
- Wide operation temperature
- 100K hrs backlight operation life
- RoHS Compliance

2.3 Application

Industrial Application.

MODEL: VM15BA V7	Page: 5	/24	Doc. No:	
------------------	---------	-----	----------	--

2.4 Display Specifications

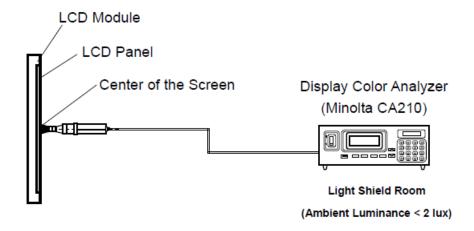
Items	Unit	Specification
Screen Diagonal	inch	15
Active Area	mm	304.128(H) x 228.096(V)
Pixels H x V	pixels	1024x3(RGB) x 768
Pixels Pitch	um	297 (per one triad) x 297
Pixel Arrangement		RGB Vertical stripe
Display mode		Normally black
White luminance (center)	Cd/m ²	1500 (Typ.)
Contrast ratio		2500:1 (Typ.)
Optical Response Time	msec	21 ms (Typ. on/off)
Normal Input Voltage VDD	Volt	3.3
Power Consumption	Watt	TBD
(VDD Line + LED Line)		(VDD=TBD; LED= 20.94W)
Weight	Grams	1010 typ.
Physical size	mm	326.5(H)x 253.5(V) x 9.6(D) (typ.)
Electrical Interface		1 Channel LVDS
Support Colors		16.2 M (RGB 8-bits) / 262K (RGB 6-bits)
Surface Treatment		Anti-Glare, 3H
Temperature range		
Operating	°C	-30 ~ 80 (TFT surface temperature)
Storage (Shipping)	°C	-40 ~ 80
RoHS Compliance		RoHS Compliance

MODEL: VM15BA V7 Page: 6 /24 Doc. No:

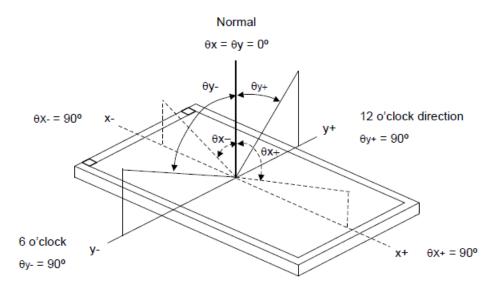
Applied Green Light, Inc.

2.5 Optical Characteristics

The following optical characteristics are measured under stable condition at 25 $^{\circ}\text{C}$

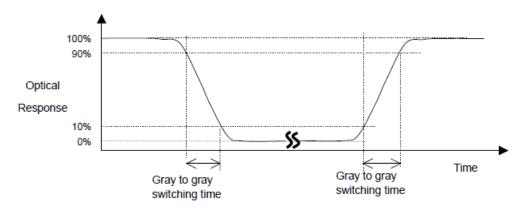

Items	Unit	Conditions	Min.	Тур.	Max.	Note
Viewing angle	Dog	Horizontal (Right) CR=10 (Left)	160	176		2
Viewing angle	Deg.	Vertical (Up) CR=10 (Down)	160	176		2
Contrast Ratio		Normal Direction	1500	2500		3
		Raising time (T _{rR})		14		
Response Time	msec	Falling time (T _{rF})		7		4
		Raising + Falling		21		
		Red x	-0.05	0.64	+0.05	
		Red y		0.34		
Color / Chromaticity		Green x		0.32		
Coordinates (CIE)		Green y		0.60		5
		Blue x		0.15		5
		Blue y		0.6		
Color coordinates		White x		0.31		
(CIE) White		White y		0.33		
Center Luminance	Cd/m ²		1200	1500		6
Luminance Uniformity	%			70		7
Crosstalk (in 60 Hz)	%				1.2	
Flicker	dB				-20	

MODEL: VM15BA V7 Page: 7 /24 Doc. No:



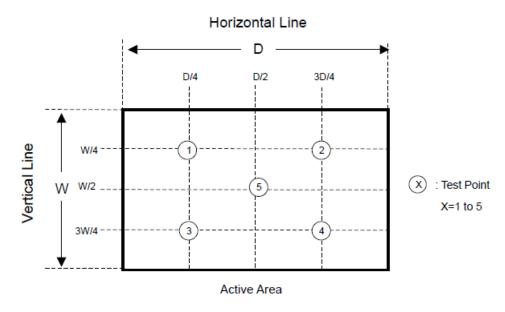
Note 1: Measurement method

The LCD module should be stabilized at given temperature for 0.5 hour to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 1 hour in a windless room.


Note 2: Definition of viewing angle

Note 3: Contrast ratio is measured by Minolta CA210

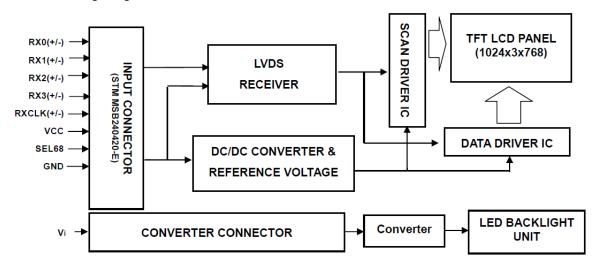
Note 4: Definition of Response time


The output signals of photo detector are measured when the input signals are changed from "Full Black" to "Full White" (rising time), and from "Full White" to "Full Black" (falling time), respectively. The response time is interval between the 10% and 90% of amplitudes. Please refer to the figure as below.

Note 5: Color chromaticity and coordinates (CIE) is measured by Minolta CA210

Note 6: Center luminance is measured by Minolta CA210

Note 7: Luminance uniformity of these 5 points is defined as below and measured by Minolta CA210



Uniformity = (Min. Luminance of 5 points) / (Max. Luminance of 5 points)

3. Functional Block Diagram

The following diagram shows the functional block of the 15 inches Color TFT-LCD Module:

MODEL: VM15BA V7 Page: 10 /24 Doc. No:

Applied Green Light, Inc.

4. Absolute Maximum Ratings

Absolute maximum ratings of the module are as following:

4.1 TFT LCD Module

Items	Symbol	Min	Max	Unit	Conditions
Logic/ LCD drive	Vin	-0.3	4.0	Volt	Note 1, 2
voltage					

4.2 Backlight unit

Items	Symbol	Min	Max	Unit	Conditions
LED Current	I LED		720	mA	Note 1, 2

4.3 Absolute Ratings of Environment

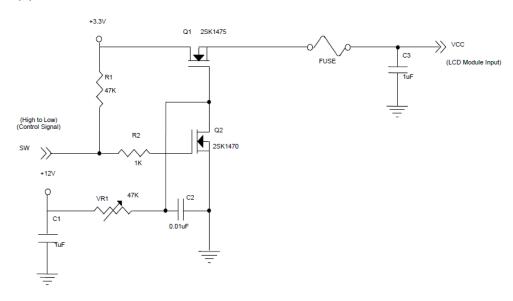
Items	Symbol	Values				Conditions		
	Symbol	Min.	Тур.	Max.	Unit	Conditions		
Operation temperature	T_OP	-30	-	80	°С			
Operation Humidity	H _{OP}			90	%	Note 3		
Storage temperature	T _{ST}	-40		80	°C	Note 3		
Storage Humidity	H _{ST}			90	%			

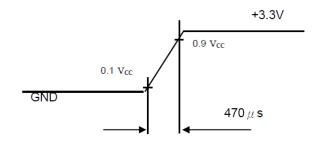
Note 1: With in Ta= 25°C

Note 2: Permanent damage to the device may occur if exceed maximum values

Note 3: For quality performance, please refer to IIS (Incoming Inspection Standard).

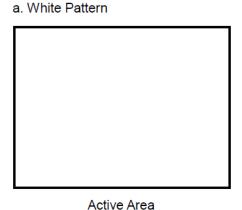
MODEL: VM15BA V7 Page: 11 /24 Doc. No:


5. Electrical characteristics


5.1 TFT LCD Module

Parameter		Symbol			Unit	Note		
raiailletei		Symbol	Min.	Тур.	Max.		Note	
Power Supply Voltage		V _{cc}	3.0	3.3	3.6	V	-	
Ripple Voltage		V_{RP}	-	-	100	mVp-p		
Rush Current		I _{RUSH}	-	-	(TBD)	Α	(2)	
Power Supply Current	White	lcc	-	(TBD)	(TBD)	mA	(3)a	
Power Supply Current	Black	ICC	-	(TBD)	(TBD)	mA	(3)b	
LVDS differential input voltag	je	Vid	200	-	600	mV		
LVDS common input voltage		Vic	1.0	1.2	1.4	V		
Differential Input Voltage for	"H" Level	V _{IH}	-	-	100	mV	-	
LVDS Receiver Threshold	"L" Level	V _{IL}	-100	-	-	mV	-	
Terminating Resistor		R _T	-	100	-	Ohm	-	

Note (1) The module should be always operated within above ranges.


Note (2) Measurement Conditions:

MODEL: VM15BA V7 Page: 12 /24 Doc. No:

Note (3) The specified power supply current is under the conditions at VDD =3.3V, Ta = 25 ± 2 °C, DC. Current and fv = 60 Hz, whereas a power dissipation check pattern below is displayed.

b. Black Pattern

Active Area

5.2 Backlight Unit

Parameter guideline is under stable conditions at 25°C (Room Temperature):

Parameter	Min	Тур	Max	Unit	Note
LED voltage (VL)		29.7		[V]	2
LED current (IL)		350		[mA]	2,
LED power (PL)		20.94		W	3
LED Life Time(LTLED)		100,000		[Hour]	1

Note 1: The "LED life time" is defined as the module brightness decrease to 50% original brightness that the ambient temperature is 25°C and typical LED Current at 350 mA.

Note 2: The LED driving condition is defined for each LED module.

Note 3: The variance of LED Light Bar power consumption is $\pm 10\%$. Calculator value for reference (IL \times VL \times 2 = PLED)

Note 4: LED Light Bar Connector is used for the integral backlight system. The recommended model is BHSR-02VS-1 manufactured by JST

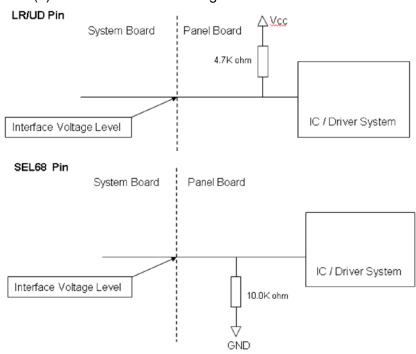
MODEL: VM15BA V7 Page: 13 /24 Doc. No:

Applied Green Light, Inc.

6. Signal Characteristic

6.1 Pixel Format Image

Following figure shows the relationship of the input signals and LCD pixel format.


		1			2		:	1 02	23	1	.02	24
1 st Line	R	G	В	R	G	В.	 R	G	В	R	G	В
768th Line	R	G	В	R	G	В	 R	G	В	R	G	В

MODEL: VM15BA V7 Page: 14 /24 Doc. No:

6.2 Signal Description

Pin No.	Symbol	Function	Polarity	Note
1	VCC	Power Supply +3.3V(typical)		
2	VCC	Power Supply +3.3V(typical)		
3	GND	Ground		
4	LR/UD	Reverse Scan Control H or NC = Normal Mode. L = Horizonta/ Vertical Reverse Scan.		
5	RX0-	LVDS Differential Data Input	Negative	
6	RX0+	LVDS Differential Data Input	Positive	
7	GND	Ground		
8	RX1-	LVDS Differential Data Input	Negative	
9	RX1+	LVDS Differential Data Input	Positive	
10	GND	Ground		
11	RX2-	LVDS Differential Data Input	Negative	
12	RX2+	LVDS Differential Data Input	Positive	
13	GND	Ground		
14	RXCLK-	LVDS Differential Data Input	Negative	
15	RXCLK+	LVDS Differential Data Input	Positive	
16	GND	Ground		
17	RX3-	LVDS Differential Data Input	Negative	
18	RX3+	LVDS Differential Data Input	Positive	
19	GND	Ground		
20	SEL68	LVDS 6/8 bit select function control, High → 6bit Input Mode Low or NC → 8bit Input Mode		Note (3)

- Note (1) Connector Part No.: Entery 3804K-F20N-10L or equivalent.
- Note (2) User's connector Part No.: Entery H204K-D20N-02B or equivalent.
- Note (3) "Low" stands for 0V. "High" stands for 3.3V. "NC" stands for "No Connection".

MODEL: VM15BA V7 Page: 15 /24 Doc. No:

6.2.1 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input the brighter the color. The table below provides the assignment of color versus data input.

												D	ata	Sig	nal										
	Color		Red				Green					Blue													
		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	B7	B6	B5	B4	В3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1 1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	_ :	:	:			:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Red	Red(252)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1100	Red(252)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(252)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(252)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
O O O O O	Green(252)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green(252)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:		:					:	:
Blue	Blue(252)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
	Blue(252)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(252)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

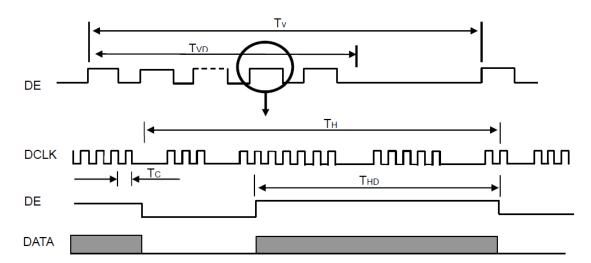
Note (1) 0: Low Level Voltage, 1: High Level Voltage

MODEL: VM15BA V7	Page: 16	/24	Doc. No:	
------------------	----------	-----	----------	--

6.3 Interface Timing

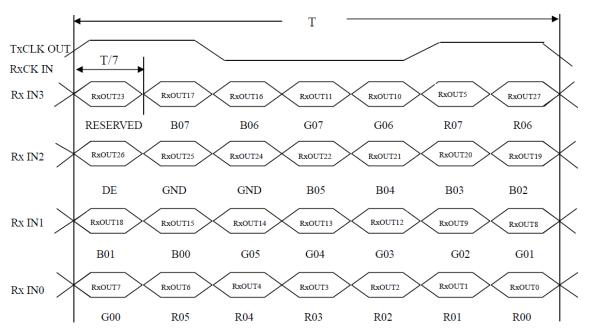
6.3.1 Timing Characteristics

INPUT SIGNAL TIMING SPECIFICATIONS

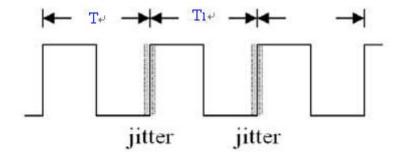

The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note	
	Frequency	Fc	53.35	65	80	MHz	-	
	Period	Tc	12.5	15.38	18.75	ns		
	Input cycle to cycle jitter	T _{rol}			(100)	ns	(a)	
LVDS Clock	Input Clock to data skew	TLVCCS	-0.02*Tc	-	0.02*Tc	ps	(b)	
	Spread spectrum modulation range	F _{clkin_mod}	-	-	1.02*Fc	MHz	(c)	
	Spread spectrum modulation frequency	F _{SSM}	-	ı	200	KHz	(6)	
	Frame Rate	Fr		60		Hz	Tv=Tvd+Tvb	
Vertical Display	Total	Tv	780	806	1200	Th	-	
Term	Active Display	Tvd	768	768	768	Th	-	
	Blank	Tvb	Tv-Tvd	38	Tv-Tvd	Th	-	
	Total	Th	1140	1344	1600	Тс	Th=Thd+Thb	
Horizontal Display Term	Active Display	Thd	1024	1024	1024	Тс	-	
101111	Blank	Thb	Th-Thd	320	Th-Thd	Тс	-	

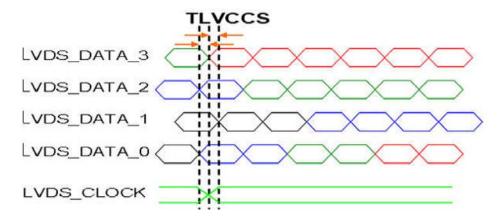
Note (1) Because this module is operated by DE only mode, Hsync and Vsync input signals should be set to low logic level or ground. Otherwise, this module would operate abnormally.


6.3.2 Input Timing Diagram

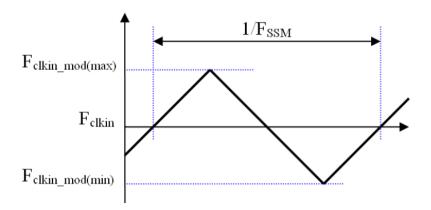
INPUT SIGNAL TIMING DIAGRAM



MODEL: VM15BA V7 Page: 17 /24 Doc. No:


TIMING DIAGRAM of LVDS

Note (a) The input clock cycle-to-cycle jitter is defined as below figures. Trcl = $I T_1 - TI$



Note (b) Input Clock to data skew is defined as below figures.

MODEL: VM15BA V7 Page: 18 /24 Doc. No:

Note (c) The SSCG (Spread spectrum clock generator) is defined as below figures.

6.4 SCANNING DIRECTION

The following figures show the image see from the front view. The arrow indicates the direction of scan.



Fig. 1 Normal scan (pin 4, LR/UD = High or NC)

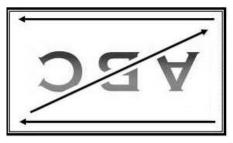
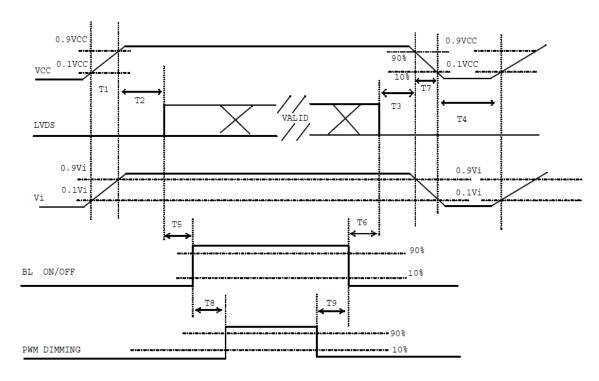



Fig. 2 Reverse scan (pin 4, LR/UD = Low)

6.4 Power ON/OFF Sequence

To prevent a latch-up or DC operation of LCD assembly, the power on/off sequence should be as the diagram below.

Power ON/OFF sequence timing

- Note (1) Please avoid floating state of interface signal at invalid period.
- Note (2) When the interface signal is invalid, be sure to pull down the power supply of LCD VCC to 0 V.
- Note (3) The Backlight converter power must be turned on after the power supply for the logic and the interface signal is valid. The Backlight converter power must be turned off before the power supply for the logic and the interface signal is invalid.

Parameter		Units		
Farameter	Min	Тур	Max	Offics
T1	(0.5)	-	(10)	ms
T2	(0)	-	(50)	ms
T3	(0)	-	(50)	ms
T4	(500)	-	-	ms
T5	(200)	-	-	ms
T6	(200)	-	-	ms
T7	(5)	-	(300)	ms
T8	(10)	-	_	ms
T9	(10)	-	-	ms

MODEL: VM15BA V7 Page: 20 /24 Doc. No:

7. Reliability Test

Environment test conditions are listed as following table.

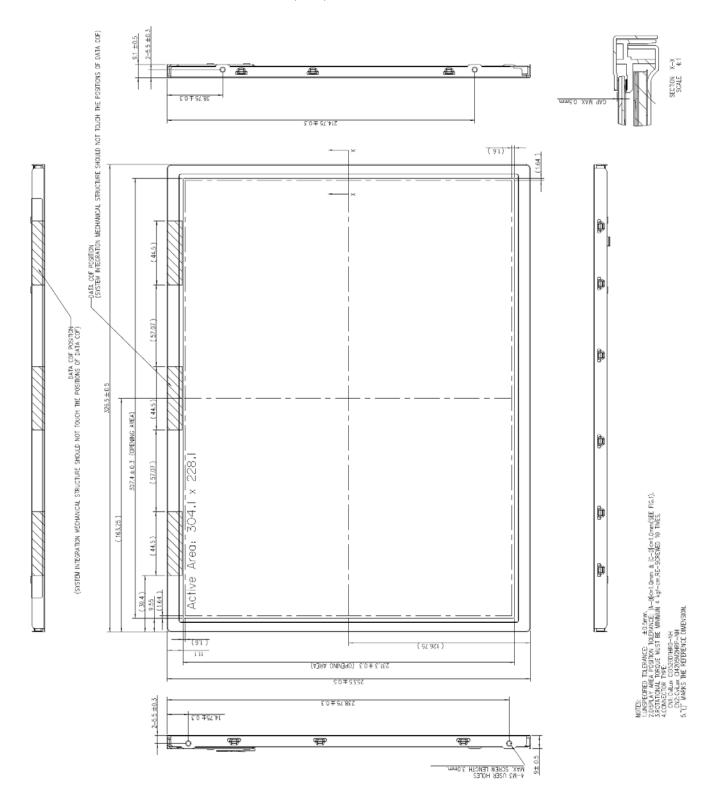
Items	Required Condition	Note
Temperature Humidity Bias (THB)	Ta= 50°C, 80%RH, 48hours	
High Temperature Operation (HTO)	Ts= 80°C, 48hours	3
Low Temperature Operation (LTO)	Ta= -30°C, 48hours	
High Temperature Storage (HTS)	Ta= 80°C, 48hours	
Low Temperature Storage (LTS)	Ta= -40°C, 48hours	
Thermal Shock Test (TST)	-30°C/30min, 80°C/30min, 100 cycles	1
On/Off Test	On/10sec, Off/10sec, 30,000 cycles	
ESD (ElectroStatic Discharge)	Contact Discharge: ± 8KV,	2
	150pF(330Ω) 1sec, 9 points, 25	
	times/ point.	
	Air Discharge: ± 15KV, 150pF(330Ω)	2
	1sec 9 points, 25 times/ point.	

Note 1: The TFT-LCD module will not sustain damage after being subjected to 100 cycles of rapid temperature change. A cycle of rapid temperature change consists of varying the temperature from -30°C to 80°C, and back again. Power is not applied during the test. After temperature cycling, the unit is placed in normal room ambient for at least 4 hours before power on.

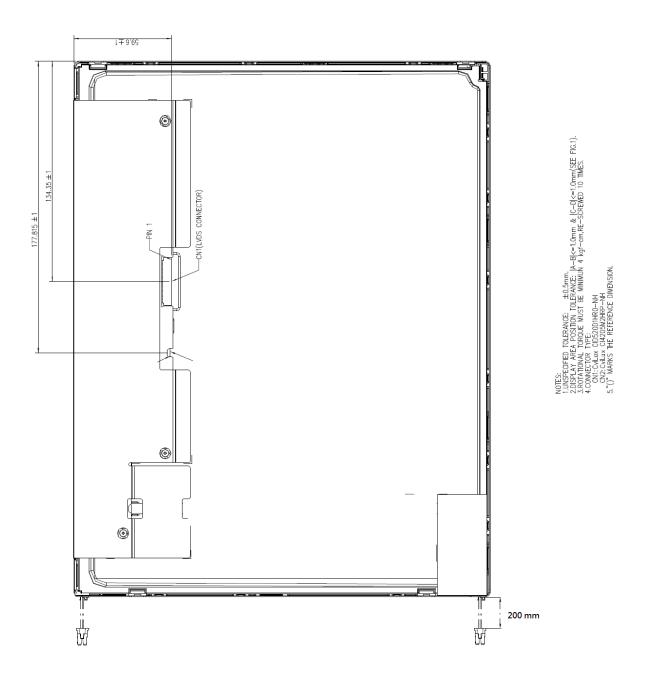
Note 2: According to EN61000-4-2, ESD class B: Some performance degradation allowed. No data lost. Self-recoverable. No hardware failures.

Note 3: The test items are tested by open frame type chassis.

MODEL: VM15BA V7	Page: 21	/24	Doc. No:	
------------------	----------	-----	----------	--


Applied Green Light, Inc.

8. Shipping Label & Package (TBD)


MODEL: VM15BA V7 Page: 22 /24 Doc. No:

9. Mechanical Characteristic (mm)

MODEL: VM15BA V7 Page: 23 /24 Doc. No: Preliminary

MODEL: VM15BA V7 Page: 24 /24

Doc. No:

Preliminary